Two-component Systems in Streptomyces
Juan-Francisco Martín, Alberto Sola-Landa and Antonio Rodríguez-García
from: Two-Component Systems in Bacteria (Edited by: Roy Gross and Dagmar Beier). Caister Academic Press, U.K. (2012)
Abstract
Two-component systems (TCS) play a very important role in the regulation of metabolism in Streptomyces species in response to different nutritional or environmental signals. Streptomyces are Gram-positive soil-dwelling filamentous bacteria with large genomes that have the ability to produce thousands of different secondary metabolites. Streptomyces genomes contain a large number of paired two-component systems (usually more than 70) and some additional orphan sensor kinases and response regulators. Several of these systems have been studied in detail in the model species Streptomyces coelicolor. Particular attention has been paid to the PhoR/PhoP and the orphan GlnR systems due to their relevance in the control of primary metabolism and secondary metabolite biosynthesis. The PhoP binding sequence in many phosphate regulated promoters is formed by 11 nucleotide direct-repeats. A cross-talk between PhoP and other global regulators such as AfsR or GlnR has been found. Other two-component systems, particularly AbsA1/AbsA2, also control antibiotic biosynthesis in S. coelicolor, while others control chitinase synthesis, stress responses or cellular differentiation. Finally, some orphan response regulators named atypical response regulators (e.g. RedZ in S. coelicolor and JadR1 in Streptomyces venezuelae) bind as ligands the final product of the antibiotic biosynthetic pathway and act as feedback regulators of the biosynthesis of these secondary metabolites read more ...