Caister Academic Press

Staphylococcal Variation and Evolution

Jodi A. Lindsay
from: Staphylococcus: Genetics and Physiology (Edited by: Greg A. Somerville). Caister Academic Press, U.K. (2016) Pages: 67-80.

Abstract

A staphylococcal genome carries all of the information responsible for behaviour of that cell. The genome sequence of each staphylococcal isolate can vary substantially from other isolates, even those that cause similar disease. And S. aureus populations as a whole are not stagnant, but constantly evolving. The population structure of S. aureus groups isolates into independent lineages, each with unique combinations of surface, regulatory and immune evasion genes. Individual isolates also acquire and lose mobile genetic elements (MGEs) encoding virulence, resistance and host-adaptation factors. Transfer of DNA within populations is controlled by molecular machinery that partially dictates how the species evolves. Selection, such as by antimicrobials or host-specificity, leads to the emergence and spread of successful clones in particular environments. Other staphylococcal species also show evidence of lineages and MGEs that shape populations. Improving technology for sequencing and comparing genomes is allowing analysis of thousands of isolates and will ensure this is a rapidly growing area of research. Investigation of the diversity and selection of staphylococcal genomic variation leads to greater understanding of physiology, host-pathogen interactions, epidemiology and the development of better therapeutic and public health strategies read more ...
Access full text
Related articles ...