Caister Academic Press

Anti-Salmonella immunity: Highlighting new research in vaccines, mucosal immunology and systemic disease

Jennifer L. Bishop, Ellen T. Arena, Kenneth W. Harder and B. Brett Finlay
from: Salmonella: From Genome to Function (Edited by: Steffen Porwollik). Caister Academic Press, U.K. (2011)


Enteric fever and non-typhoidal salmonelloses (NTS) are caused by a wide variety of Salmonella enterica serovars and are a serious health threat throughout the world. Immunity to systemic typhoid and NTS requires intricate crosstalk between both innate and adaptive immune cells spanning multiple organ systems. The development of a number of new mouse and in vitro culture models suitable for studying gastroenteritis has highlighted the complexity of mucosal responses and shown how a diverse subset of cells interact within the intestinal architecture to elicit anti-Salmonella immunity. These include specific dendritic cell subsets, natural killer cells and TH17 skewed T helper cells and the repertoire of cytokines they produce, including IL-17, IL-23, IL-22 and IL-15. Furthermore, the importance of commensal microflora has been stressed in various Salmonella models, and new research has shown the various effects of prebiotics, probiotics and antibiotics on Salmonella pathogenesis. Systemic immune responses are also more explicitly understood, as the location and phenotype of cells harboring intracellular bacteria become more defined. This chapter will review these recent advances and how they are being translated into new therapies and vaccine studies in the human population read more ...
Access full text
Related articles ...