Caister Academic Press

Typing phages and prophages of Salmonella

Wolfgang Rabsch, Sandra Truepschuch, Daniel Windhorst and Roman G. Gerlach
from: Salmonella: From Genome to Function (Edited by: Steffen Porwollik). Caister Academic Press, U.K. (2011)


Most Salmonella strains contain prophages or remnant phages and release them spontaneously. Special bacteriophages were developed and used in phage typing systems for epidemiological work all over the world since 1947 to control salmonellosis. This method provides fast and inexpensive characterization of frequent serovars such as S. Typhimurium or S. Typhi on the sub-serovar level and is especially useful for primary analysis before investigation by other, more expensive molecular techniques such as sequencing. Prophages are themselves not only variable elements in a chromosome but also variable by module exchange within the prophage genome, thus providing a high discriminating power. The availability of several genome sequences of different Salmonella serovars has recently led to the identification of new prophage-like elements. The prophages present in serovars Typhimurium, Enteritidis and Typhi are discussed. Salmonella phages frequently carry foreign DNA, so called morons. These morons are not necessary for phage functions but provide a benefit for the host. A list of some new morons found in different Salmonella serovars is presented. Recently, a monophasic variant of S. Typhimurium mainly belonging to Anderson phage type DT193 has become one of the dominant causes of salmonellosis in Germany and other European countries. These strains with the antigenic formula 4,[5],12:i:- do not express the 2nd phase flagellum. Investigation of their prophage attachment sites showed that the sites for Gifsy-1, Gifsy-2 and ST64B were occupied by the respective prophages. In about 90% of the monophasic DT193 strains the P22/ST64T attachment site was occupied by a novel 18.4 kb fragment, containing several open reading frames with significant similiarity to phage-related genes read more ...
Access full text
Related articles ...