Caister Academic Press

Exploiting microRNAs to Regulate Transgene Expression

Virginie Pichard, Dejana Ivacik and Nicolas Ferry
from: Applied RNAi: From Fundamental Research to Therapeutic Applications (Edited by: Patrick Arbuthnot and Marc S. Weinberg). Caister Academic Press, U.K. (2014)


RNA interference (RNAi) is as highly-conserved gene regulatory mechanism which is triggered by double-stranded RNA. The discovery of this naturally functioning gene silencing mechanism has contributed to a deeper understanding of the function and regulation of eukaryotic genes. In mammalian cells, RNAi functions in regulating gene expression via small, non-coding RNA molecules, known as microRNAs (miRNAs). Over the past decade, numerous studies have emphasized the role of miRNAs as powerful transcriptome regulators highlighting the potential usefulness of these small RNA effecters to regulate transgene expression. Precise tissue-specific control of transgene expression is a prerequisite for many investigational and therapeutic applications involving gene transfer. Consequently, miRNAs have been exploited by gene therapists to improve transcriptional regulation of gene transfer vectors and accomplish tight spatial and temporal regulation of transgene expression in different therapeutic contexts. In this chapter, we will emphasize the versatility of miRNAs to improve the efficacy of many gene therapy applications, with a particular focus on their potential for improving specificity and safety of gene therapy as well as their role in averting immune-mediated clearance of gene-modified cells read more ...
Access full text
Related articles ...