PCR Applications for Epigenetics Research
Gavin Meredith, Miro Dudas, Mark Landers, Vasiliki Anest, Jonathan Wang, Caifu Chen, Peter Jozsi and Christopher Adams
from: PCR Troubleshooting and Optimization: The Essential Guide (Edited by: Suzanne Kennedy and Nick Oswald). Caister Academic Press, U.K. (2011)
Abstract
The field of epigenetics transcends traditional genetics, genomics, molecular biology, and is poised to revolutionize the field of medical research and healthcare. It is a diverse field that encompasses the study of nuclear components such as chromatin structure, including histone modifications, protein/DNA interactions, protein/RNA interactions, and how these factors influence gene function. It also includes the study of DNA methylation and the role that non-coding RNAs play in influencing DNA methylation patterns, chromatin structure and ultimately regulating gene expression. Just as the field of epigenetics is broad and complex, so is the molecular technology of polymerase chain reaction (PCR). For every question one would like to address in any of these areas of epigenetics, there is a PCR application and instrumentation suitable to address it. For example there are numerous PCR-based approaches to look at DNA methylation patterns, densities, and even the methylation status of individual cytosine residues by PCR. Additionally, there are PCR methods to survey ncRNA expression and identify regions of the genome where proteins and RNA interact or where certain functional histone marks are located. This chapter provides an overview of these methodologies with a focus on the advantages and disadvantages of each approach read more ...