Emerging Antimicrobial Resistance in Mycoplasmas of Humans and Animals
Ken B. Waites, Inna Lysnyansky and Cécile M. Bébéar
from: Mollicutes: Molecular Biology and Pathogenesis (Edited by: Glenn F. Browning and Christine Citti). Caister Academic Press, U.K. (2014)
Abstract
Antimicrobial resistance has emerged in many types of bacteria and has spread worldwide, often as a result of selective pressure caused by overuse and misuse of antimicrobial agents in humans and animals. Clinically significant resistance to drugs such as tetracyclines, fluoroquinolones, and macrolides, has also developed in mycoplasmas and ureaplasmas of humans and animals, and appears to be increasing. These changes in susceptibility patterns have led to a renewed interest in development of standardized and reproducible methods for antimicrobial susceptibility testing to guide individual case management; surveillance for resistance locally, nationally, and internationally; and for evaluation of new antimicrobial agents. In vitro studies have been performed to induce resistance by stepwise selection followed by nucleic acid sequencing and analysis of the resistant microbes genetically to elucidate the molecular mechanisms involved. Clinical isolates proven to be resistant to various drugs phenotypically have also been characterized genetically and compared with mutants selected in vitro to clarify further the resistance mechanisms that are operative in a natural setting. In many instances, the same mechanisms have been shown to occur naturally and in vitro. In this chapter we have summarized antimicrobial agents useful for treatment of mycoplasma and ureaplasma infections of humans and animals and the current trends in development of antimicrobial resistance in these organisms. Evidence for the molecular basis of antimicrobial resistance is also discussed along with descriptions of methods for determination of antimicrobial susceptibilities read more ...