Caister Academic Press

Metagenomics and integrative omics technologies in microbial bioremediation: current trends and potential applications

Varun Shah, Kunal Jain, Chirayu Desai and Datta Madamwar
from: Metagenomics: Current Innovations and Future Trends (Edited by: Diana Marco). Caister Academic Press, U.K. (2011)

Abstract

Implementation of efficacious bioremediation strategies relies heavily on intrinsic microbial community dynamics, structure and function. Any one particular microorganism is incapable of processing all the metabolic reactions to degrade environmental pollutants, however a group of diverse organisms form a community and collectively process all the metabolic reactions for bioremediation. Therefore, metagenomics based analyses of entire microbial community genomes becomes imperative to delineate the metabolic pathways responsible for biodegradation. The essential genes for bioremediation may be present, however to ascertain how many of them are involved in bioremediation we need high throughput metatranscriptomics and metaproteomics, transcriptome and proteome analyses of entire community respectively. Metametabolomics, analyses of the entire repertoire of microbial community metabolites and fluxomics, real time flux analysis of molecules/metabolites over a time period provide the missing links about regulation of metabolism of anthropogenic/xenobiotic compounds. Interactive studies between metagenomics, metatranscriptomics, metaproteomics and metametabolomics have become a trend in microbial bioremediation. In this chapter, we discuss the potential of recent innovative breakthroughs in molecular and '-omics' technologies such as molecular profiling, ultrafast pyro-sequencing, microarrays, mass spectrometry and other novel techniques and applications along with bioinformatics tools to gain insights of indigenous microbial communities and their mechanism in bioremediation of environmental pollutants read more ...
Access full text
Related articles ...