Caister Academic Press

Metagenomics for the identification of novel viruses

Vincent Montoya, Eunice C. Chen, Charles Y. Chiu and Patrick Tang
from: Metagenomics: Current Innovations and Future Trends (Edited by: Diana Marco). Caister Academic Press, U.K. (2011)

Abstract

Viruses are the most abundant and genetically diverse biological entities on Earth and the vast majority is yet to be discovered. Therefore, systematic surveillance for viruses requires techniques that have both broad specificity and high sensitivity. Conventional laboratory techniques in virology often fail to detect a specific etiology in many syndromes that are thought be caused by viruses. Metagenomics-based tools such as pan-viral microarrays and ultra-high-throughput sequencing have significantly improved our ability to detect and characterize divergent as well as novel viruses. Some of these methods rely on the fact that any one virus will possess some degree of conservation within its genomic sequence with other members of the same family. Thus, nucleic acid amplification tests targeting conserved regions in the viral families associated with a particular disease can often lead to a successful diagnosis. However, metagenomics-based techniques such as pan-viral microarrays are able to transcend our predetermined lists of viruses associated with each syndrome and allow for the simultaneous interrogation of thousands of conserved and specific genetic regions within all taxa of known virus families. Second generation high-throughput sequencing offers the unique opportunity to discover novel pathogens with no a priori sequence information with sensitivities comparable to that of PCR. As the costs for these techniques continue to decrease and the technology becomes more widely available, they will have the potential to revolutionize our approach to detecting viruses and diagnosing viral diseases read more ...
Access full text
Related articles ...