Caister Academic Press

Molecular Genetics and Genomic Approaches to Explore Fusarium Infection on Wheat Floral Tissue

Martin Urban and Kim E. Hammond-Kosack
from: Fusarium: Genomics, Molecular and Cellular Biology (Edited by: Daren W. Brown and Robert H. Proctor). Caister Academic Press, U.K. (2013)

Abstract

The most destructive phase of the wheat-Fusarium interaction commences at anthesis and results in lower grain yields, reduced grain quality and the contamination of grain with harmful mycotoxins. Current control strategies are often inadequate. Globally, F. graminearum is the most problematic species. A recent microscopic study has revealed a hitherto unsuspected latent phase where hyphae symptomlessly advance the infection through living wheat floral tissues prior to host cell death. Various forward and reverse genetic methods have been developed to explore the repertoire of Fusarium genes contributing to disease formation, mycotoxin production and sporulation. At the time of writing this chapter, 159 genes are known to contribute to virulence. A newly devised seven-stage floral disease assessment key is described to assist in the inter-comparison of mutant phenotypes. Various innovative bioinformatics approaches are currently being used to predict additional virulence components, by taking advantage of the wealth of genomic, transcriptomic, metabolomic and phenotypic knowledge available. These include (1) InParanoid analyses to infer gene function by using the phenomics data sets available for ~100 pathogenic species in the Pathogen-Host Interaction database, (2) the prediction of protein-protein interaction networks, and (3) statistical analysis of the spatial distribution of specific gene types within the genomic landscape and via comparative phytopathogen genome analyses. Soon data arising from various next generation sequencing approaches will increase the precision of both experimental and predictive studies read more ...
Access full text
Related articles ...