Caister Academic Press

Epidemiology and Molecular Biology of Vibrio cholerae

Shah M. Faruque and John J. Mekalanos
from: Foodborne and Waterborne Bacterial Pathogens: Epidemiology, Evolution and Molecular Biology (Edited by: Shah M. Faruque). Caister Academic Press, U.K. (2012)

Abstract

Vibrio cholerae belonging to O1 and O139 seropgroups cause cholera, a life-threatening diarrhoeal disease, which spreads through consumption of water and food contaminated with the pathogen. Other serogroups of V. cholerae are also occasionally associated with mild to moderate enteric infections. Although V. cholerae is a human pathogen, the bacteria are part of the normal aquatic flora in estuarine and brackish waters, and thus are able to persist in the environment outside the human host. The ability of V. cholerae strains to cause disease in humans depends on their virulence gene content, which varies between pathogenic and nonpathogenic strains. Horizontal transfer of critical virulence genes among different V. cholerae strains, as well as microevolution of bacterial genes contribute significantly to the emergence of V. cholerae strains with altered antigenic and pathobiological properties. Seasonal cholera epidemics may selectively enrich genetic variants with unique properties that promote transmission or environmental persistence. The ecosystem comprising V. cholerae, the aquatic environment and the human host offers an understanding of the complex relationship between pathogenesis and the evolution of a typical waterborne bacterial pathogen read more ...
Access full text
Related articles ...