Caister Academic Press

Extreme to the 4th Power! Oil-, High Temperature- , Salt- and Pressure - Tolerant Microorganisms in Oil Reservoirs. What Secrets Can They Reveal?

Hans Kristian Kotlar
from: Extremophiles: Microbiology and Biotechnology (Edited by: Roberto Paul Anitori). Caister Academic Press, U.K. (2012)

Abstract

In the deep biosphere, extraordinary new types of microorganisms, sedimented or buried 200 - 500 million years ago, can be found. These organisms can be identified and characterized. The information obtained can be developed into novel tools for searching for new oil in sensitive regions like the Arctic, Antarctica and jungle areas. Relatively few enzymes are used in large-scale industrial applications. Enzymes isolated from these extremophile/ thermophile organisms might provide "game changing" new possibilities. They may furnish new incentives for the development of entirely new technical processes. These microbes provide opportunities for new technologies in second generation biofuel production. Several companies are working on alternative routes for the production of fuels using biomass as the raw source material. Traditional heavy oil extraction methods have major difficulties in justifying their high energy usage, CO2 emissions and soil and environment pollution. The first company implementing a large-scale process based on biotechnology principles in enhanced oil recovery will gain huge strategic and economic benefits. The knowledge of this huge subsurface population of diverse microorganisms provides excellent opportunities for bioprospecting. There should be a multitude of spin-offs outside the oil industry. The world is desperately in need of new enzymes, new antibiotics, new immunosuppressant, new anticancer agents, etc. This chapter reviews just some of the areas we have been working on at Statoil. Hopefully some of these investigations could one day solve some of the problems we will face in the future. One day these extremophiles could be on the payroll of many different companies read more ...
Access full text
Related articles ...