Caister Academic Press

Engineering of Alkane Production in Cyanobacteria

Xuefeng Lu and Weihua Wang
from: Cyanobacteria: Omics and Manipulation (Edited by: Dmitry A. Los). Caister Academic Press, U.K. (2017) Pages: 219-234.


Alkanes with defined carbon chain lengths possess higher energy density, low hygroscopicity and volatility, and compatibility with existing liquid fuel infrastructure, which are the predominant constituents of gasoline, diesel and jet fuels. Alkane biosynthesis is ubiquitous and biosynthetic pathways have been identified in cyanobacteria, photosynthetic microbes, which opens a door to engineer alkane production with high efficiency in cyanobacteria. Firstly, redirecting the carbon flux to fatty acids or acyl-acyl carrier protein (ACP) can provide larger precursor pool for further conversion to alkanes. In combination with the overexpression of alkane biosynthesis genes, alkane production can be significantly improved in engineered strains. Protein engineering for key enzymes in alkane biosynthesis pathways will further enhance the yield of alkanes. Secondly, system biology research on cyanobacteria will increase our knowledge about the metabolism in cyanobacteria and lead to significant improvements in strain modification for alkane production. Convenient and effective molecular tools for genetic engineering of cyanobacteria will expand the ability to engineer cyanobacteria for alkane production. It is significant and promising to directly utilize solar energy and convert carbon dioxide into alkanes, drop-in biofuels, in cyanobacteria read more ...
Access full text
Related articles ...