Caister Academic Press

Cell Division in Cyanobacteria

Corinne Cassier-Chauvat and Franck Chauvat
from: The Cell Biology of Cyanobacteria (Edited by: Enrique Flores and Antonia Herrero). Caister Academic Press, U.K. (2014)

Abstract

This review summarizes what is known regarding cell division in cyanobacteria, the fascinating microorganisms that are logically attracting a growing attention in various areas of basic and applied researches. Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, colonize most water and soil environments of our planet, and provide a large part of the oxygenic atmosphere and biomass for the food chain. They display different morphologies ranging from unicellular (cylindrical, spherical and spirals) to complex multi-cellular (filamentous) forms that contain differentiated cells allowing the growth or survival of these organisms under adverse conditions. Furthermore, cyanobacteria divide in one or several successive planes, at right angles or in irregular planes so that the cells may appear singly or in aggregates of varying size. Nowadays, cyanobacteria are regarded as promising "low-cost" microbial cell factories for carbon capture and storage, and for the sustainable production of secondary metabolites and biofuels, thanks to their simple nutritional requirements, their metabolic plasticity, and the powerful genetics of some model strains. In this chapter, we report that cyanobacteria (which are Gram negative) share cytokinetic genes in common with both Gram positive and Gram negative bacteria, and/or the chloroplast and the nuclear genome of plants and algae. In agreement with cyanobacteria being regarded as the ancestor of the chloroplast, the stromal portion of the chloroplast division complex resemble the cyanobacterial cell division machinery, but many other components were lost after the endosymbiotic event read more ...
Access full text
Related articles ...