Caister Academic Press

Climate Change and Nitrogen Turnover in Soils and Aquatic Environments

Gero Benckiser, Jagdish K. Ladha and Franz Wiesler
from: Climate Change and Microbial Ecology: Current Research and Future Trends (Edited by: Jürgen Marxsen). Caister Academic Press, U.K. (2016) Pages: 113-136.

Abstract

Soils covering the Earth surface are subdivided into many more than 10,500 soil types with relatively similar working carbon and nitrogen cycles, the largest, bio-, geo-, aqua- and atmosphere interconnecting greenhouse gas (CO2, CH4, NH3, NO, N2O) flux drivers on Earth. This contribution reviews the present knowledge about N cycling from its introduction by N2-fixation over the up taken NH4+ into cells and its transformation there, the oxidation to NO3- in aquatic and terrestrial ecosystems, the energy conserving reduction of NO3- to N2O and N2 and discusses perspectives how particularly in the industrialized world less N overloaded agro-, aquaculture systems, less NO3- polluted groundwaters and a less N2O polluted atmosphere could be achieved. Climate changing CO2, N2O and CH4 will first hit regions like Western Asia and Northern Africa with their characteristic low and unpredictable rainfalls, long dry seasons, scarce water resources, rural poverty, and a high dependence on agriculture, limited cropping/livestock and low level of technological adoptions. The hard work invested to improve technical N2 fixation will first slow in our industrializing world when the mechanisms behind the individual genes holding promise of a better N absorption are fully understood and incorporated into an adapted germplasm read more ...
Access full text
Related articles ...