Siderophore-mediated Iron Acquisition for Campylobacter Infection
Ximin Zeng and  Jun Lin
from: Campylobacter Ecology and Evolution (Edited by: Samuel K. Sheppard). Caister Academic Press, U.K. (2014) 
Abstract
Iron acquisition is critical for bacterial pathophysiology. The high-affinity iron acquisition mediated by siderophores is the most efficient and common iron scavenging mechanism in Gram-negative bacteria. While Campylobacter does not produce any siderophores, siderophore piracy is evident in various Campylobacter species. To date, enterobactin, a triscatecholate siderophore with the highest affinity for ferric iron, is the only known physiologically relevant siderophore utilized by Campylobacter for in vivo colonization. Recent studies have revealed novel features of ferric enterobactin acquisition systems in Campylobacter, provided new insights into the evolution of ferric enterobactin acquisition in different Campylobacter species, and suggested that Campylobacter is an ideal model organism to examine key issues of enterobactin-mediated iron scavenging. Salmochelin, the glucosylated enterobactin, is likely another significant iron source for Campylobacter during infection. This chapter also discusses the ecology of potential siderophores and corresponding producers as an iron source in the intestine and discusses the role of siderophore-mediated iron scavenging in the pathogenesis of Campylobacter and other enteric pathogens read more ...



