Caister Academic Press

The Chic Motility and Chemotaxis of Borrelia burgdorferi

Stuart F. Goldstein, Chunhao Li, Jun Liu, Michael Miller, Md. Abdul Motaleb, Steven J. Norris, Ruth E. Silversmith, Charles W. Wolgemuth and Nyles W. Charon
from: Borrelia: Molecular Biology, Host Interaction and Pathogenesis (Edited by: D. Scott Samuels and Justin D. Radolf). Caister Academic Press, U.K. (2010)

Abstract

The motility of Borrelia burgdorferi is complex, enigmatic, yet quite elegant. Here we address specific and unique aspects of borrelial motility and chemotaxis. For B. burgdorferi, in contrast to most spirochete species, the periplasmic flagella have a skeletal function that affects the entire shape of the cell. These organelles allow the spirochete to swim by generating backward-moving waves along the length of the cell and they do so by rotating within the periplasmic space. The well studied paradigm of Escherichia coli and Salmonella enterica serovar Typhimurium motility and chemotaxis does not directly apply to these unique bacteria. Recent advances are presented and summarized with respect to cell and periplasmic flagella structure, along with an exciting analysis of the in situ hook-basal body-motor complex. In addition, advances in the dynamics of motility, how B. burgdorferi swims, their chemotaxis, gene regulation and the role of motility and chemotaxis in the biology of B. burgdorferi are summarized. Now that a foundation in this field has been established, the future can only continue to be exciting as we sort out the structure, function, regulation and the role of motility and chemotaxis in the life cycle of B. burgdorferi read more ...
Access full text
Related articles ...