Caister Academic Press

Self-assembly and Application of Cellulosomal Components

Daniel B. Fried, Sarah Moraïs, Qi Xu, Shi-You Ding, John O. Baker, Yannick J. Bomble, Michael E. Himmel and Edward A. Bayer
from: Bionanotechnology: Biological Self-assembly and its Applications (Edited by: Bernd H. A. Rehm). Caister Academic Press, U.K. (2013)


Cellulosomes are modular, super-molecular enzyme systems secreted by anaerobic bacteria to degrade recalcitrant plant cell wall polysaccharides to simple sugars. The components of this molecular machine include a manifold of enzymatic units and carbohydrate-binding modules, as well as the cohesin and dockerin modules responsible for the system's unique self-assembly and connectivity. Known to be one of the highest affinity protein-protein interactions discovered to date, the cohesin-dockerin interaction is also the key to engineering the cellulosome. By mixing and matching the spare parts of the cellulosome and connecting them via cohesins and dockerins, biotechnologists have begun pursuing the concept of "designer cellulosomes," which one day may be an important contributor to production of sustainable biomass-derived fuels. By incorporating molecules from other systems into the cellulosome paradigm, nanotechnologists have begun to harness the potential of this molecular construction kit to create diverse, self-assembling nanostructures for a broad variety of biotechnological applications read more ...
Access full text
Related articles ...