Caister Academic Press

Corrosion and Fouling

Steve Flint and Gideon Wolfaardt
from: Microbial Biofilms: Current Research and Applications (Edited by: Gavin Lear and Gillian D. Lewis). Caister Academic Press, U.K. (2012)


Biofilms can directly or indirectly be attributed to deterioration of the underlying substratum. Corrosion may result, particularly if the surface comprises metal or metal alloy. This phenomenon, referred to as microbially influenced corrosion (MIC) affects many industries from food manufacture to medicine. The economic impact of corrosion is significant due to the need for replacing corroded equipment, repairs and attempts to prevent corrosion. MIC is believed to be responsible for one third of all metallic corrosion. Although there have been many studies into the mechanisms of MIC, the process is relatively poorly understood. Most information relates to pure cultures, however biofilms are rarely composed of single species thus most models are a simplification of the real process. It is likely the MIC depends on the composition of the biofilm and the environment surrounding the biofilm. Prevention and control methods rely on mechanical cleaning of fouling and chemical removal and killing of biofilms. Future control measures are likely to focus on preventing biofilm formation read more ...
Access full text
Related articles ...