Caister Academic Press

Genomic Insights into Oil Biodegradation in Marine Systems

Vitor A.P. Martins dos Santos, Michail M. Yakimov, Kenneth N. Timmis, and Peter N. Golyshin
from: Microbial Biodegradation: Genomics and Molecular Biology (Edited by: Eduardo Díaz). Caister Academic Press, U.K. (2008)

Abstract

Petroleum oil is toxic for most life forms and episodic and chronic pollution of the environment by oil causes major ecological perturbations. Marine environments are especially vulnerable since oil spills of coastal regions and the open sea are poorly containable and mitigation is difficult. In addition to pollution through human activities, millions of tons of petroleum enter the marine environment every year from natural seepages. Despite its toxicity, a considerable fraction of petroleum oil entering marine systems is eliminated by the hydrocarbon-degrading activities of microbial communities, in particular by a remarkable recently discovered group of specialists, the so-called hydrocarbonoclastic bacteria (HCB). Alcanivorax borkumensis, a paradigm of HCB and probably the most important global oil degrader, was the first to be subjected to a functional genomic analysis. This analysis has yielded important new insights into its capacity for (i) n-alkane degradation including metabolism, biosurfactant production and biofilm formation, (ii) scavenging of nutrients and cofactors in the oligotrophic marine environment, as well as (iii) coping with various habitat-specific stresses. The understanding thereby gained constitutes a significant advance in efforts towards the design of new knowledge-based strategies for the mitigation of ecological damage caused by oil pollution of marine habitats. It has moreover exposed other unexpected potential biotechnological applications of HCB, namely in the areas of bioplastics and biocatalysis read more ...
Access full text
Related articles ...