Caister Academic Press

Signalling Networks and Design of Pollutant Biosensors

Manuel Carmona, María A. Prieto, Beatriz Galán, José L. García and Eduardo Díaz
from: Microbial Biodegradation: Genomics and Molecular Biology (Edited by: Eduardo Díaz). Caister Academic Press, U.K. (2008)

Abstract

The two elements needed for an efficient utilization of aromatic compounds by bacteria are the enzymes responsible for their degradation and the regulatory elements that control the expression of the catabolic operons to ensure the more efficient output depending on the presence/absence of the aromatic compounds or alternative environmental signals. Transcriptional regulation seems to be the more common and/or most studied mechanism of expression of catabolic clusters, although post-transcriptional control also plays an important role. Transcription is dependent on specific regulators that channel the information between specific signals and the target gene(s). A more complex network of signals connects the metabolic and the energetic status of the cell to the expression of particular catabolic clusters, overimposing the specific transcriptional regulatory control. In general, the regulatory networks that control the operons involved in the catabolism of aromatic compounds are endowed with an extraordinary degree of plasticity and adaptability. Elucidating such regulatory networks will pave the way for a better understanding of the regulatory intricacies that control microbial biodegradation of aromatic compounds, which are key issues that should be taken into account for the rational design of more efficient recombinant biodegraders, bacterial biosensors, and biocatalysts for modern green chemistry read more ...
Access full text
Related articles ...