Caister Academic Press

Secreted Proteins of Vibrio cholerae

Bethany Kay Boardman and Karla J. Fullner Satchell
from: Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis (Edited by: Karl Wooldridge). Caister Academic Press, U.K. (2009)

Abstract

The Gram-negative bacterium Vibrio cholerae produces both surface-exposed and secreted factors essential for both its survival and growth in the environment and for induction of the diarrheal disease cholera. Surface-exposed factors include three different Type IV pili that mediate persistence in the intestine as well as surface colonization in the environment. In addition, these pili contribute to the evolution of the pathogen by serving as phage receptors or as a structure essential for DNA uptake. Secreted factors associated with disease include the major virulence factor Cholera Toxin (CT) that is responsible for the severe diarrhea associated with cholera disease. Additional secreted toxins, including hemolysin, hemagglutinin/protease, MARTXVc, and Type III and Type VI effectors, have also been found to function in virulence and may significantly contribute to disease of non-CT producing non-O1/non-O139 strains. Export of some virulence factors is interconnected through signal pathways and secretion machineries with other secreted enzymes such as chitinases that are important for survival in the environment. Thus, V. cholerae seems to have efficiently evolved to adapt to both intestinal and aquatic environments and utilizes secreted factors to modulate the environment to promote its own growth, survival, and dissemination read more ...
Access full text
Related articles ...