Archaea-metal Interactions: Metabolism and Strategies of Resistance
Elisabetta Bini
from: Archaea: New Models for Prokaryotic Biology (Edited by: Paul Blum). Caister Academic Press, U.K. (2008)
Abstract
Transition metals are required by all living organisms. Because of their chemical properties, they are important cofactors of numerous enzymes and are essential to carry out the most diverse functions, from basic metabolic processes to highly specialized ones. Essential metals are required only in trace levels, becoming toxic when their intracellular concentration exceeds the physiological level. Other metals, not required by biological processes, can be harmful at very low concentrations. This chapter attempts to provide an overview of the ways developed by archaea for utilizing metals and their strategies to maintain metals within physiological ranges, and a review of the genetic determinants and regulators controlling the response to metals. There is a growing awareness that all microorganisms, including archaea, have an important impact on the biogeochemical cycling of elements. It is evident that in-depth investigations of the mechanisms underlying metal homeostasis and resistance in archaea are required. Fortunately, new and improved techniques of analysis, combined with an increasing number of genome sequences, are rapidly advancing the field of metal metabolism in archaea read more ...