Interactions and Communication Within Marine Biofilms
Priyanka Sathe and Sergey Dobretsov
from: Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment (Edited by: Anna M. Romaní, Helena Guasch and M. Dolors Balaguer). Caister Academic Press, U.K. (2016) Pages: 47-62.
Abstract
Biofilms are the prime mode of life for many microbial species and they are omnipresent in aquatic environment. Biofilm's three-dimensional architecture provides the concomitant microbial populations with additional protection from predation and toxic substances. Marine biofilms (often termed as micro-fouling) are composed of different species of bacteria, diatoms and protozoa surrounded by a matrix of extra polymeric substances (EPS). Formation of marine biofilms depends on the species present, their microbial activity and environmental conditions. Marine biofilms attract or repel larvae of invertebrates and spores of macro-algae resulting in formation of macro-fouling communities ultimately leading to biofouling which is ever increasing threat for maritime industry. Function of any biofilm is dependent on symbiotic interactions between microbial communities. These interactions include competition, cooperation, and neutralism. The best studied chemical interaction between microbes is a cell-to-cell signaling mechanism between bacteria which is called quorum sensing (QS). This process is based on production and perception of simple chemical signals (inducers), which at concentrations higher than thresholds ones triggered differential expression of target genes and cascades of chemical reactions. In order to prevent growth of competitors, some microorganism evolved ability to interfere with QS of bacteria. This chapter reviews current understanding of the role of marine microbial communities, interactions between different microorganisms within marine biofilms and novel anti-biofilm strategies read more ...