Caister Academic Press

Role of Within-Host Models in Target Identification, Compound Optimization and Dose Selection

Juilee Thakar and Eric T. Harvill
from: Emerging Trends in Antibacterial Discovery: Answering the Call to Arms (Edited by: Alita A. Miller and Paul F. Miller). Caister Academic Press, U.K. (2011)

Abstract

Integrated pharmacokinetic-pharmacodynamic models are commonly used to study the in vivo dynamics of antimicrobial agents and bacterial pathogens. These models are extremely useful for understanding the properties of antimicrobial agents such as absorption, transport, rate of binding, etc. However, they fail to consider within-host aspects of the infectious process that are likely to affect the bacterial-host interactions. For example, immune-mediated mechanisms to contain bacteria or limit their access to nutrients can also affect the access of a drug to its bacterial target. Alternatively, pathogens have various strategies to sequester themselves from host immune mechanisms that can also affect the access of therapeutic agents. The search for new antibacterial agents that will be effective in vivo can be substantially informed by an understanding of the within-host dynamics of bacterial pathogens. Mathematical modeling of immune responses can assist in this process by providing new predictions, by offering mechanistic understanding and by revealing the gaps in our current understanding. Such models are based on experiments that reveal the components of the immune system that play important roles during infections. But knowing the components alone usually provides only a static picture of bacterium-host interactions. Mathematical models aim to use the information obtained from experiments to construct the interactions and dependencies between various components. Thus mathematical models offer a mechanistic understanding of the interplay between various immunological processes and simulations of these models give a dynamic view of the entire process. In this chapter we will first provide an overview of pharmacokinetic and pharmacodynamic models followed by a review of some of the immunological processes involved in bacterial infections which are generally ignored in pharmacodynamic models but are likely to affect access or activity of treatments. We will then discuss the development of mathematical models by different approaches. We will end the chapter by exploring implications of these models in the discovery of new antibacterial agents read more ...
Access full text
Related articles ...