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Abstract 
Although Borrelia spirochaetes are often, but 
mistakenly, described as Gram-negative bacteria due 
to their diderm, i.e. double-membrane envelopes, a 
closer examination reveals significant differences in 
composition and architecture. Particularly striking is 
the lack of classical endotoxin/lipopolysaccharide. 
Instead, glycolipids and surface lipoproteins 
dominate the the host-pathogen interface, where they 
play important roles during transmission, persistence 
and ensuing pathogenic processes. A modified 
peptidoglycan cell wall is also emerging as a potent 
pathogenicity determinant, in addition to contributing 
to cell shape in concert with periplasmic flagella. 
While surface lipoproteins such as the Osps interact 
with a variety of ligands in different organ tissues, 
they are also targets of the immune response and 
several have emerged as vaccine candidates. Some 
of the identified periplasmic lipoproteins, i.e., the 
OppAs, are components of substrate transport 
complexes. Investigations into integral membrane 
proteins led to the identification of several Borrelia 
porins: P13, whose structure and function is 
unknown, DipA, which is specific for dicarboxylates, 
and P66, which has a dual role as a pore-forming 
outer membrane protein and adhesin. Tol homologs 
BesA, -B, and -C appear to form a Type I ‘channel’ to 
export exogenous toxic agents such as antibiotics 
and maintain infectivity by an unknown mechanism. 
Initial studies on envelope biogenesis pathways and 
mechanisms based on diderm proteobacterial model 
organisms have revealed significant deviations from 
the Gram-negative norm, further bolstering the 
unique status of Borrelia among microbial pathogens. 

Introduction 
The complex life style of Borrelia spirochaetes, i.e. 
their ability to shuttle between hematophagous 
arthropods and various vertebrates, exposes them to 
a variety of niches differing in nutritional content and 
immunological pressure. Survival, transmission and 
ultimately pathogenesis, therefore, requires these 
organisms to possess a large degree of adaptive 
biological capacity. First, the surface of the pathogen 
needs to be optimized repeatedly for interaction with 
environments and tissues as different as the tick 
midgut, the mammalian skin or joint cartilage. 
Diverse outer surface-exposed proteins play a critical 
role in this adaptive process by providing ligands for 
receptor-mediated adhesion, mechanisms of host 
immune response avoidance, as well as pathways for 
the acquisition of nutrients. As they are antigens 
evoking immune reactions in the mammalian host, 
they represent pre-eminent vaccine candidates. The 
spatiotemporal regulation of borrelial outer surface 
proteins is being understood in ever increasing 
depth, and structure-function relationships have 
begun to emerge. Genomics, proteomics, novel 
genetic tools and sophisticated visualization 
techniques now aim to reveal a more complete 
picture of the structure, function, biogenesis and 
maintenance of the Borrelia cell envelope. Of 
particular interest are (i) transport and assembly of its 
abundant lipoproteins, (ii) the uptake of essential 
nutrients and the efflux of toxic and undesired 
compounds, (ii) the role of glycolipids and other lipid 
bilayer components in the formation and biological 
function of lipid rafts, and (iv) the emerging 
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importance of a unique peptidoglycan cell wall in 
pathogenesis, cell shape and cell division. In this 
chapter, we will take an inward journey through the 
Borrelia envelope, using Borrelia burgdorferi as a 
well-studied guide, highlighting common and unique 
features, reviewing structure-function relationships of 
instructive examples, and exploring open questions 
and hypotheses. 

Structural features and components of the 
Borrelia envelope 
Borrelia has a diderm (i.e. two lipid bilayer) 
ultrastructure that is distinct from that of gram-
negative bacteria, such as Escherichia coli. An 
overview of the Borrelia cell envelope is depicted in 
Figure 1. As with other spirochaetes, a fragile outer 
membrane surrounds the protoplasmic cylinder, 

which consists of a peptidoglycan layer, a 
cytoplasmic (inner) membrane and the enclosed 
cytoplasmic contents (Johnson et al., 1984; Barbour 
and Hayes, 1986; Kudryashev et al., 2009). A ribbon 
of 7-11 flagella is located in the periplasmic space 
where it is attached to the poles and wraps around 
the cel l cyl inder, giving the bacterium i ts 
characteristic flat wave shape (see Chapter 8 by Sze 
et al.) (Barbour and Hayes, 1986; Goldstein et al., 
1994; Motaleb et al., 2000; Charon et al., 2009). 

The outer membrane of all bacteria forms a selective 
barrier between the cell and the environment that 
excludes certain molecules due to its physico-
chemical properties and simultaneously allows entry 
of nutrient substances by diffusion through the outer 
membrane, either via porins (Benz, 2001) or 

Figure 1. Major components of the diderm B. burgdorferi envelope and a model of spirochetal protein secretion. Displayed on the LPS-deficient 
bacterial surface are abundant and diverse surface lipoproteins, such as the Osps, a variety of glycolipids, and relatively few OM porins (OMPs). A few 
lipoproteins are anchored in the periplasmic leaflet of the OM. Outer membrane vesicles (OMVs) containing OM and periplasmic contents can be 
released from bacterial cells. Flagella are confined to the periplasm, atop a thin peptidoglycan layer. Envelope-spanning complexes include the Type I 
secretion system (T1SS) Bes machinery and the modular Bam/Tam complex involved in OMP assembly. Soluble periplasmic proteins include protein 
transport chaperones such as Skp and LolA, and proteases like CtpA or HtrA. Shown IM proteins are involved in protein export and processing, e.g., the 
flagellar T3SS, the general secretory (Sec) pathway components, lipoprotein modification (Lgt, Lsp, Lnt) and localization (Lol) pathways, or peptide 
import (OppA and OppBCDF) complexes. The IM also contains glycolipids. A depiction of lipid rafts containing glycolipids and membrane proteins has 
been omitted for clarity. See also text. (Modified from (Zückert, 2019) and used with permission).
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receptor-mediated uptake (Nikaido, 2003). 
Additionally, outer membrane proteins (OMPs) play a 
critical role in the virulence of bacterial pathogens by 
responding to different environments, by mediating 
interactions with the host, or by competing with 
specific host defense mechanisms, thereby 
facilitating invasion and colonization of various 
tissues. 

The borrelial outer cell membrane is fluid and 
consists of 45-62% protein, 23-50% lipid and 3-4% 
carbohydrate (Barbour and Hayes, 1986). Its 
composition differs significantly from those of gram-
negative bacteria. First, a particularly distinguishing 
feature is the absence of phosphatidylethanolamine 
(Belisle et al., 1994) and lipopolysaccharide (LPS) 
(Takayama et al., 1987) and the presence of non-
LPS glycolipid antigens (Eiffert et al., 1991; Wheeler 
et al., 1993; Belisle et al., 1994). These glycolipids 
represent about 50% of the total lipids and contain 
only galactose as the monosaccharide constituent 
(Berg, 2001; Hossain et al., 2001). It is unclear 
whether the glycolipids are asymmetrically distributed 
in the borrelial outer membrane, as with LPS in gram-
negative bacteria (Kamio and Nikaido, 1976). 
Secondly, the B. burgdorferi outer membrane exhibits 
a relatively low density of transmembrane-spanning 
proteins as initially determined by freeze fracture EM 
studies (Walker et al., 1991; Radolf et al., 1994; 
Jones et al., 1995). This may explain why Borrelia is 
more susceptible than Gram negative bacteria to 
detergents or to disruption by routine physical 
manipulat ions such as centr i fugat ion and 
resuspension. Thirdly, the outer membrane contains 
an unusually large number of lipoproteins (Brandt et 
al., 1990) many of which are on the bacterial surface, 
the host-pathogen interface (Dowdell et al., 2017), 
where they act as (i) adhesins, (ii) targets for 
bactericidal antibodies, (iii) or receptors for various 
molecules. 

Outer membrane lipoproteins 
An initial analysis of the genome sequence of 
B. burgdorferi sensu stricto predicted 132 open 
reading frames that contain the signal sequence 
characteristic for lipoproteins and 32 additional open 
reading frames that have other similarities to 
lipoproteins (Hayashi and Wu, 1990; Fraser et al., 
1997; Casjens et al., 2000). A re-evaluation using a 
modified prediction algorithm indicated that the 
genome encodes up to 127 l ipoprote ins , 
corresponding to 7.8% of open reading frames 
(Setubal et al., 2006), a proportion significantly higher 

than in other bacterial genomes (Fraser et al., 1997; 
Fraser et al., 1998; Casjens et al., 2000). A 
comprehensive in vitro spatial assessment of the B. 
burgdorferi lipoproteome indicated that about two 
thirds of the encoded lipoproteins localize to the 
surface (Dowdell et al., 2017). This abundance of 
surface-localized lipoproteins, together with the 
general importance of outer surface proteins in 
bacterial adaptation and persistence, has led many 
researchers to focus their investigations on this class 
of surface molecules. Furthermore, the unusual 
membrane architecture of spirochaetes and the 
ancient phylogeny of these bacteria suggest that the 
export, structure and function of spirochetal 
lipoproteins are unique to these organisms. 

Borrelial lipoproteins play a major role in the 
activation of the host inflammatory response and 
elicitation of inflammation in tissues at sites of 
infection during Lyme borreliosis. The immuno-
potentiating activities of bacterial lipoproteins are 
related to their N-termini based on two lines of 
evidence: (i) acylation is essential for their 
inflammatory activities and (ii) synthetic N-terminal 
lipopeptides reproduce the proinflammatory activities 
of the native molecules (Bessler et al., 1985; Lex et 
al., 1986; Hoffmann et al., 1988; Deres et al., 1989; 
Erdile et al., 1993; Radolf et al., 1995). While 
activation of the innate immune response by 
lipoproteins is crucial for defense against B. 
burgdorferi infection, surface exposed lipoproteins 
also play essential roles in adaptive responses and 
pathogenicity of Borrelia spirochaetes. Lipoproteins 
dominate pathogenic mechanisms exploited by B. 
burgdorferi, including those of antigenic variation 
(Zhang et al., 1997; Zhang and Norris, 1998a), 
evasion of complement killing (Kraiczy et al., 2001; 
Alitalo et al., 2002; Stevenson et al., 2002) and 
adherence mechanisms (Coburn et al., 2005). The 
role of surface (lipo)proteins in pathogenesis is 
comprehensively discussed in a recent review by 
Caine and Coburn (Caine and Coburn, 2016) and 
chapter 13 by Coburn et al. We will, therefore, 
discuss only selected lipoprotein examples. 

Successful succession: OspA/B and OspC 
The reciprocal expression of OspA/B and OspC 
during Borrelia transition from its tick vector to the 
mammalian host represents the prototypical 
paradigm of how stage-specific protein expression 
can contribute to pathogenesis during the natural 
cycle of spirochetal transmission. In ticks, Borrelia 
expresses large amounts of OspA and OspB and 
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almost no OspC. The production of OspA and OspB 
proteins decreases once withiin the mammalian host 
and, instead, the spirochaete produces OspC 
(Schwan et al., 1995; Ohnishi et al., 2001). 
Expression of OspC is induced 36-48 hours into the 
blood meal, while OspA remains expressed 
throughout the tick phase and is repressed once the 
bacteria reach the mammalian host (Barthold et al., 
1995; Schwan et al., 1995; de Silva et al., 1996; 
Fingerle et al., 1998; Schwan and Piesman, 2000; 
Ohnishi et al., 2001; Iyer et al., 2015; Aranjuez et al., 
2019; Caimano et al., 2019). 

OspA, whose coding sequence was the first one 
cloned and sequenced from B. burgdorferi, remains 
one of the most studied proteins in the bacterium 
(Howe et al., 1986; Bergström et al., 1989). It is 
encoded by the same operon as OspB on the 54-kb 
linear plasmid lp54 (Barbour and Garon, 1988; 
Bergström et al., 1989). OspA consists of four β-
sheets, formed by 21 anti-parallel β-strands and a C-
terminal α-helix (Li and Lawson, 1995). The crystal 
structure of the OspB C-terminus (residues 152-296) 
was identical to that of OspA (Becker et al., 2005). 
OspA and OspB have been shown to play important 
roles in the pathogenesis of Lyme borreliosis in a 
large number of in vivo and in vitro experiments. 
OspA is preferentially expressed by the spirochaetes 
in the unfed tick midgut (Pal et al., 2000) where it 
mediates adhesion to the midgut epithelium by 
interacting with a tick receptor, TROSPA (Pal et al., 
2004a). The OspA structure revealed a hydrophobic 
cavity buried in a positively charged cleft in the 
carboxyterminal domain that might be a binding site 
the receptor (Li et al., 1997). Providing an example 
into the emerging multifunctionality of Borrelia 
surface lipoproteins, the tick-specific expression of 
OspA (and its close homolog OspB) were later shown 
to shield the bacteria from bactericidal antibodies in 
the blood meal that are directed against otherwise 
accessible host-specific Borrelia antigens (Battisti et 
al., 2008; Tilly et al., 2016). 

OspC is encoded on the 26-kb circular plasmid cp26 
(Fraser et al., 1997) and forms a genus-wide, 
structurally conserved protein family with the variable 
small proteins (Vsps) in RF Borrelia. The common 
OspC/Vsp structural fold consists of α-helices, 
organized as dimer of five parallel α-helices and two 
short β-strands (Carter et al., 1994; Eicken et al., 
2001; Kumaran et al., 2001; Zückert et al., 2001; 
Lawson et al., 2006). OspC initially was thought to 
facilitate the migration of Borrelia to tick salivary 

glands, which is initiated by a blood meal promoting 
the transmission of spirochaetes to the mammalian 
host (Gilmore and Piesman, 2000; Pal et al., 2004b). 
Yet, in subsequent studies, OspC was dispensable 
for localization or migration within the tick but was 
strictly required to efficiently infect mice (Grimm et 
al., 2004; Tilly et al., 2006; Dunham-Ems et al., 2012; 
Tilly et al., 2013). Further studies consolidated 
OspC’s impressive role as a multifunctional essential 
early host colonization and dissemination factor, 
showing binding of both an immunosuppressive tick 
salivary protein (Ramamoorthi et al., 2005) and host 
complement component C4b (Caine et al., 2017), as 
well as protection from phagocytosis by macro-
phages (Carrasco et al., 2015). 

Initial evaluation of the ospC genes from different 
Borrelia genospecies revealed a large degree of 
sequence polymorphism (Jauris-Heipke et al., 1995; 
Livey et al., 1995), resulting in the classification of 
strains into 19 major OspC groups (Wang et al., 
1999). Molecular analys is suggested that 
recombination between different ospC alleles occurs 
frequently and that this genetic exchange is mediated 
by lateral transfer of ospC sequences within the 
same genospecies or between different Borrelia 
species (Livey et al., 1995; Seinost et al., 1999;  
Barbour and Travinsky, 2010). Of particular interest 
for the further functional definition of OspC was the 
finding that certain invasive Borrelia isolates 
belonged to defined OspC groups, implying that the 
OspC protein was also an important driver of 
invasiveness and dissemination of Lyme borreliosis 
(Seinost et al., 1999; Lagal et al., 2003). Indeed, 
OspC variants were later shown to differ in their 
affinity for plasminogen and fibrinogen (Lagal et al., 
2006; Bierwagen et al., 2019), and a recent well-
controlled study demonstrated that differential OspC 
binding to fibronectin and/or dermatan sulfate directly 
affects tissue tropism in an OspC variant-dependent 
manner (Lin et al., 2020b). 

Adhesin and anti-complement factors: multifunction-
ality and redundancy 
Attachment to tissues and cellular matrix is an 
important prerequisite for colonization of the host by 
pathogenic bacteria. Therefore, it is not surprising 
that in addition to OspA/B and OspC, additional 
borrelial lipoproteins have been shown to function as 
adhesins (see also Chapter 13). Decorin-binding 
proteins A and B (DbpA/B) are early-identified 
examples of this functional group of lipoproteins, 
facilitating the colonization of collagenous tissues 
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and tissue tropism to the joints by adhering to the 
collagen-associated proteoglycan decorin (Guo et al., 
1995; Guo et al., 1998; Hanson et al., 1998; Brown et 
al., 2001; Fischer et al., 2003). Antibodies against 
DbpA can prevent infection via needle infection only 
(Hagman et al., 1998; Hanson et al., 1998), 
nevertheless illustrating the importance of adhesion 
in the pathogenesis of Lyme disease.  

Bgp (Borrelia glycosaminoglycan-binding protein) is a 
B. burgdorferi hemagglutinin with the capacity to bind 
heparan sulphate, dermatan sulphate, and aggrecan 
(Parveen and Leong, 2000; Russell and Johnson, 
2013). Bgp is surface exposed, but its classification 
as a lipoprotein remains unresolved (Parveen and 
Leong, 2000). Bgp production was upregulated 
during conditions that mimicked tick feeding 
(Ramamoorthy and Philipp, 1998), while secretion of 
Bgp into extracellular environment also has been 
observed, indicating a possible role as a immune 
response decoy (Cluss et al., 2004). Since the 
adaptation of spirochaetes to the mammalian host 
environment leads to enhanced binding of 
glycosaminoglycan (Parveen et al., 2003) and 
aggrecan is a major proteoglycan found in joints, Bgp 
is likely contributing to efficient dissemination and 
colonization. 

A diverse family of surface lipoproteins contributes to 
the bacterium’s ability to evade clearance by the 
complement cascade, a system of plasma proteins 
that can be activated by antibody or lectins bound to 
the bacterial surface or by the pathogen surface itself 
(Medzhitov and Janeway, 2000). Several of the 
lipoproteins recruit complement regulatory factors to 
the bacterial surface and are therefore called 
CRASPs, for complement regulatory factor acquiring 
surface proteins. CspA (CRASP-1), expressed in the 
unfed tick environment, binds Factor H (FH), Factor 
H-like 1 (FHL-1) as well as complement components 
C7 and C9; CspZ (CRASP-2), expressed in the 
mammalian environment, binds FH and FHL-1; and 
some of the the OspE/F-related proteins, ErpA 
(CRASP-5), ErpC (CRASP-4) and ErpP (CRASP-3), 
bind FH, several FHL protein variants, as well as 
plasminogen (reviewed in (Lin et al., 2020a). CspA is 
a homodimer that forms a novel α-helical fold 
(Cordes et al., 2005) and binds FH, C7 and C9 at 
distinct sites (Kenedy et al., 2009; Hallstrom et al., 
2013; Hammerschmidt et al., 2014), indicating that 
serum resistance remains important in the tick 
environment. 

Another example of a multifunctional surface 
lipoprotein is BBK32. BBK32 (P35) initially was 
shown to bind fibronectin (Probert and Johnson, 
1998) and later also to promote attachment of 
Borrelia to GAGs. Fibronectin binding proved to be 
important for initiating microvascular interactions, 
while binding of GAG via a discrete domain was 
shown to drive joint colonization (Fischer et al., 2006; 
Norman et al., 2008; Lin et al., 2015). A recent study 
demonstra ted BBK32-mediated b ind ing to 
complement factor C1r, thereby blocking the classical 
complement pathway. Thus, BBK32 further 
contributes to the bacterium’s serum resistance and 
hematogenous spread (Garcia et al., 2016). 

Multiphasic antigenic variation and persistence 
The VlsE proteins are of particular interest because 
they were shown to be essential for persistence of B. 
burgdorferi in the natural enzootic cycle (Rogovskyy 
et al., 2015). VlsE belongs to the VMP (variable 
major proteins) family also found in RF Borrelia 
(Barbour, 1990; Burman et al., 1990; Barbour, 1993) 
(see Chapter 14 by Lopez et al.). VlsE is encoded on 
lp28-1 of B. burgdorferi and undergoes antigenic 
vajriation through an elaborate unidirectional gene 
conversion mechanism (Zhang et al., 1997; Zhang 
and Norris, 1998a; Coutte et al., 2009) via a 
mechanism similar to that responsible for 
recombination between the expressed pilin gene pilE 
and silent copies of pilS in Neisseria gonorrhoeae 
(Hagblom et al., 1985; Haas and Meyer, 1986; Zhang 
et al., 1992; Koomey, 1997; Zhang et al., 1997). 
Fifteen silent, non-expressed vls cassettes can be 
recombined into a functional, expressed vlsE gene, 
resulting in multiphasic antigenic variation of the 
expressed lipoprotein (Zhang and Norris, 1998a, b). 
The Holliday junction RuvAB helicase was shown to 
play a central role in the required recombinatory 
processes (Dresser et al., 2009; Lin et al., 2009). 

VlsE contains invariable N- and C-terminal domains 
and a central variable domain that includes six 
variable and six invariable regions. Little is known 
about the signals that trigger recombination events at 
the vls locus. Recombination occurs in vivo as soon 
as four days after experimental infection of mice but 
not in vitro, suggesting that the mammalian host 
provides the signal for Vls recombination (Zhang and 
Norris, 1998b). The role of the mammalian host is 
important since the VlsE recombination rate of B. 
burgdorferi s.l. was found to be lower in IFN-γ R-
deficient mice than in control animals. These results 
suggest that the murine immune response can 
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promote the in vivo adaptation of B. burgdorferi s.l. 
(Anguita et al., 2001). The solved 3-D structure of 
VlsE is unlike OspA-C, consisting of eleven α-helices 
and four short β-strands (Eicken et al., 2002). This is 
in spite of the fact that VlsE and OspC/Vlps share 
overall structural features, such as the close 
proximity of their N and C termini and a hypervariable 
sequence corresponding to a surface exposed region 
(Cullen et al., 2004; Lawson et al., 2006; Radolf and 
Caimano, 2008; Zückert, 2013). A recent report 
indicates that VlsE masks epitopes of another 
surface protein, Arp (Lone and Bankhead, 2020), a 
phenomenon that may be similar to OspA blocking 
access to the outer membrane porin P66 and other 
surface proteins (Bunikis and Barbour, 1999; Tilly et 
al., 2016). 

Another protein important for host adaptation is 
Lp6.6, a small but abundant 6.6-kDa lipoprotein 
localizing to the periplasmic face of the outer 
membrane in large protein complexes (Katona et al., 
1992; Lahdenne et al., 1997; Promnares et al., 
2009). Lp6.6 was shown to be important for 
transmission from the tick to the vertebrate host 
(Promnares et al., 2009) and is significantly 
downregulated during mammalian infect ion 
(Lahdenne et al., 1997). This downregulation is 
initiated during tick feeding through an RpoS-
dependent mechanism (Yang et al., 2000; Caimano 
et al., 2005). 

Outer membrane porins 
The molecular sieving properties of bacterial cell 
envelopes are the result of channel forming proteins 
in their outer membranes, called porins. Porins are 
integral membrane proteins that form large water 
filled pores through the outer membrane (Benz, 
1994; Achouak et al., 2001). Their function is mainly 
for uptake of substances from the environment and 
can be subdivided into two classes. The porins of the 
first class can be described as general diffusion 
pores. These porins sort mainly according the 
molecular mass of the solutes and show a linear 
relation between translocation rate and solute 
concentration gradient. The second class contains 
pores with a binding site inside the channel. These 
specific porins are responsible for the rapid uptake of 
classes of solutes such as carbohydrates, phoshate 
or nucleosides (Ferenci et al., 1980; Benz et al., 
1986; Hancock and Benz, 1986; Benz et al., 1988). 

Borrelia are limited in their metabolic and biosynthetic 
capacities and, therefore, highly dependent on 

nutrients provided by their hosts (Fraser et al., 1997; 
Casjens et al., 2000; Thein et al., 2008) (see Chapter 
6 by Gherardini et al.). Consequently, these bacteria 
need to have an efficient regulation of the nutrient 
uptake across the cell envelope. The first indication 
of porins in B. burgdorferi came through investigation 
of channel-forming activities in the planar lipid bilayer 
assay of outer membrane vesicles (OMV). Two porin 
activities of 0.6 nS and 12.6 nS were found (Skare et 
al., 1995). Subsequent work characterized three 
possible porins in Borrelia burgdorferi: P13 (Östberg 
et al., 2002; Pinne et al., 2004; Barcena-Uribarri et 
al., 2014), P66 (Skare et al., 1997; Pinne et al., 2007; 
Barcena-Uribarri et al., 2010; Barcena-Uribarri et al., 
2013), and Oms38/Dip A (Thein et al., 2008). 

There are also indications of uncharacterized 
channel-forming activities present in B. burgdorferi as 
determined by black lipid bilayer analysis of outer 
membrane fractions (Östberg et al., 2002). Using 
computer-based algorithms, Kenedy and coworkers 
identified two novel borrelial OMPs with porin 
activities, BB0405 and BB0406 (Kenedy et al., 2016). 
BB0405 and BB0406 are cotranscribed and share a 
high degree of amino acid homology. Yet, BB0405 is 
accessible to proteases whereas BB0406 is not 
(Kenedy et al., 2016). Further analysis of these 
putative porins revealed that BB0405 appears to be 
essential for infection and that BB0406 is interacting 
with laminin and important for the dissemination into 
distant organs (Bista et al., 2020). In contrast to LD 
Borrelia species, knowledge of porin activities in RF 
Borrelia is rather limited. There are, however, 
indications of several pore-forming activities in outer 
membrane preparations of RF spirochaetes (Shang 
et al., 1998; Thein et al., 2008), and genes with a 
high degree of homology to B. burgdorferi p13, p66, 
and dipA can be found in the published genomes of 
the RF agents B. duttonii, B. recurrentis and B. 
hermsii.  

The P13 porin family  
The outer membrane protein P13 is encoded by ORF 
BB0034 which belongs to the paralogous gene family 
(PF) 48. PF48 has eight additional plasmid-encoded 
genes or pseudo-genes (Fraser et al., 1997; Noppa 
et al., 2001; Pinne et al., 2006). P13 was discovered 
in a high passage derivative of B. burgdorferi strain 
B31, B313, which lacked major Osps (OspA-D and 
DbpA/B) (Sadziene et al., 1995). Mice infected with 
B313 were used to generate MAbs against P13, 
which, in turn, inhibited the growth of the Osp-
deficient strain but not the wild-type strain (Sadziene 
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et al., 1995). This implied that surface exposed 
lipoproteins must hide the P13 epitope, in a similar 
manner to OspA protecting P66 (Bunikis and 
Barbour, 1999) and VlsE shielding Arp (Lone and 
Bankhead, 2020). Surface exposure of P13 was later 
confirmed by a variety of techniques, while the 
presence of an N-terminal signal sequence, a signal 
peptidase I cleavage site and three transmembrane 
spanning α-helices were predicted by computer 
analysis (Noppa et al., 2001). Furthermore, peptide 
sequencing revealed that P13 is processed at the C-
terminus, but the N-terminal sequence was blocked 
by possible modification at the N-terminus (Noppa et 
al., 2001). Combined mass-spectrometry revealed 
this modification to be pyroglutamylation, i.e., 
pyroglutamate formation at an N-terminal glutamine 
(Nilsson et al., 2002). Pyroglutamate modification is 
either catalysed by the enzyme glutamine 
cyclotransferase or can occur spontaneously (Busby 
et al., 1987; Khandke et al., 1989; Awade et al., 
1994). The latter might occur in P13 since no 
glutamine cyclotransferase homologue was found in 
the B. burgdorferi genome. Although formation of 
pyroglutamate at N-terminal glutamine residues has 
been suggested to protect some proteins from 
proteolytic degradation (Strobl et al., 1997), the role 
of pyroglutamylation of P13 remains to be elucidated.  

The surface exposure and predicted transmembrane 
spanning domains of P13 indicated that it might 
possess channel-forming properties. The pore-
forming activity of P13 was first described in 2002 
using protein purified by FPLC from an outer 
membrane protein preparation. In a black lipid bilayer 
(BLB) analysis, it displayed an average single 
channel conductance (SCC) of 3.5 nS (Östberg et al., 
2002). However, in a subsequent study using a 
different purification method, the SCC was revised 
and confirmed to be 0,6 nS (Barcena-Uribarri et al., 
2014). Most porins exist in either open or closed 
states, depending on the transmembrane potential, a 
phenomenon known as voltage gating. Whether this 
is physiologically significant is questionable, since 
porin voltage dependence measurements in planar 
lipid bilayer assays suggest that the critical voltage 
(Vc), above which general porins close far exceeds 
the naturally occurring Donnan potential across the 
outer membrane (Koebnik et al., 2000). However, this 
strategy is still widely used to characterize porins. 
The channel formed by P13 was not influenced by 
voltage increases, reflecting a pore stably 
incorporated in the lipid bilayer. Since substrate-
specific channels tend to be voltage-independent 

(Koebnik et al., 2000), perhaps P13 is a specific 
porin. Single channel and selectivity measurements 
showed that P13 had no preference for either cations 
or anions and showed no voltage-gating up to +/- 100 
mV (Barcena-Uribarri et al., 2014).  

Blue-native PAGE using P13 in its native state 
revealed that the P13 complex, consisting only of 
P13 monomers, has a molecular mass of roughly 300 
kDa (Barcena-Uribarri et al., 2014). Using non-
electrolytes to estimate channel diameter, the P13 
homo-oligomer was estimated to be approximately 
1,4 nM with a 400-Da molecular mass cut-off 
(Barcena-Uribarri et al., 2014). While numerous 
substrates have been tested, no substrate specificity 
for the P13 channel has yet been demonstrated. 

The channel-forming activity of P13 also was 
confirmed by genetic experiments. The p13 gene 
was inactivated by allelic-exchange mutagenesis, this 
being the first reported example of disruption of a 
gene encoding an integral outer membrane protein of 
B. burgdorferi. The porin activities of OM protein 
preparations derived from knock-out and wild-type 
strains were compared using the planar lipid bilayer 
assay. The SCC activity corresponding to P13 was 
eliminated in the p13 knock-out strain. Evidence of 
additional porin activities present in OM of B. 
burgdorferi, distinct from the activities of P66, P13 
and DipA, have been suggested (Östberg et al., 
2002; Pinne et al., 2007; Thein et al., 2008). 
Several interesting characteristics of P13, such as its 
small size, unusual amounts of subunits in an 
oligomer, hydrophobicity and predicted membrane-
spanning α-helices are all in disagreement with 
common features of conventional porins (Östberg et 
al., 2002; Pinne et al., 2006; Barcena-Uribarri et al., 
2014). 

To further investigate the unusual processing of P13, 
an attempt to identify the C-terminal protease was 
performed. Using the amino acid sequence of the 
known carboxyl-terminal protease A (CtpA) from 
Bartonella bacilliformis (Mitchell and Minnick, 1997) 
to BLAST search the B. burgdorferi B31 MI genome 
(Fraser et al., 1997; Casjens et al., 2000), a 
homologous gene (bb0359) was found (Östberg et 
al., 2004). To elucidate if the activities of P13 and/or 
other Borrelia proteins are affected by CtpA, the ctpA 
gene was inact ivated by al le l ic exchange 
mutagenesis (Östberg et al., 2004). Immunoblot 
analysis revealed that P13 was larger and had a 
more acidic pI in the ctpA knock-out, consistent with 
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the theoretical size and pI of P13 if it were not 
processed at the C-terminus. 2-D gel electrophoresis 
of B. burgdorferi total proteins revealed several 
proteins present only in the ctpA mutant. Mass 
spectroscopy analysis of these potential CtpA 
substrates revealed that P13 and BB0323 are 
processed by CtpA, while BBA74 is up-regulated and 
produced in multiple isoforms in the absence of CtpA. 
These effects were due to loss of CtpA because 
complementation with a wild type copy of ctpA 
restored wild type-like protein expression profiles 
(Östberg et al., 2004). However, BBA74 is not a 
substrate for CtpA, so that its up-regulation is 
probably a secondary effect of ctpA inactivation 
(Östberg et al., 2004). Interestingly, the expression 
level of CtpA in the complemented strain is higher 
than in wild type, reducing the levels of BBA74 below 
its detection limit (Östberg et al., 2004). Thus, CtpA 
has pleiotropic effects, processing P13 and 
influencing the appearance of several other proteins. 
The importance of this unusual C-terminal processing 
of P13 is not fully known, but it may play a role in 
translocation of the protein in vivo. In a study by 
Kumru and coworkers, the P13 C-terminal peptide 
was altered to investigate its function (Kumru et al., 
2011a). These studies suggests that the C-terminal 
peptide likely acts as a safeguard against misfolding 
or mislocalization in the outer membrane prior to its 
removal by CtpA (Kumru et al., 2011a). The 
connection of this C-terminal processing to the 
channel forming activity needs to be elucidated. 

Being extremely hydrophobic (hydropathicity index, 
0.47) and spanning the membrane with α-helices, 
one would have assumed that P13 would insert into 
the inner membrane by the conventional SRP-
d e p e n d e n t p r o t e i n s e c r e t i o n m a c h i n e r y. 
Nevertheless, the unusual feature of C-terminal 
cleavage CtpA led to the hypothesis that this event 
initiates translocation to the outer membrane 
(Östberg et al., 2004). Yet, P13 is present in OM 
protein preparations from the ctpA knock-out mutant. 
Therefore, the 28-amino acid C-terminal extension of 
P13 appears not to be required for transportation to 
the outer membrane, but cleavage may be necessary 
for correct P13 assembly. This mechanism is 
supported by the function of CtpA in photosynthetic 
organisms. A substrate for CtpA in photosystem II, 
the hydrophobic peptide D1 that spans the thylakoid 
membranes of chloroplasts (Hankamer et al., 2001), 
must be cleaved at its C-terminus for correct 
assembly and translocation and to ensure a 
functional photosystem II (Nixon et al., 1992; Ivleva 

et al., 2000). The C-terminus of P13 is processed 
directly after the alanine residue removing the 
extreme C-terminal 28 aa (Noppa et al., 2001). 
Interestingly, the C-terminal extension removed in D1 
from different organisms varies from between 8 to 16 
aa but is always cleaved after an alanine (Ivleva et 
al., 2000). Clearly, similarities between P13 and D1 
exist and imply that CtpA might play a critical role in 
the translocation and assembly of functional P13. 
Moreover, CtpA of B. burgdorferi contains a predicted 
N-terminal signal sequence reminiscent of the need 
to transport CtpA across the thylakoid membrane in 
chloroplasts (Karnauchov et al., 1997) . By analogy, 
we interpret that CtpA is transported through the 
Borrelia inner membrane and that C-terminal 
processing of P13 occurs in the periplasmic space. In 
summary, P13 is able to form channels in the 
borrelial outer membrane despite its small molecular 
mass and α-helical secondary structure (Östberg et 
al., 2002; Barcena-Uribarri et al., 2014). This 
homooligomeric porin with a 400 kDa cut-off possibly 
acts as a general diffusion channel for small 
molecules into Borrelia. 

P66 (Oms66) 
P66 is a well-studied dual-function, integral outer 
membrane protein that is encoded by a chromosomal 
gene in both Lyme disease and relapsing fever 
spirochaetes. Its function as a pore-forming outer 
membrane protein has been clearly demonstrated by 
studies in planar lipid membranes and liposomes 
(Skare et al., 1997; Pinne et al., 2007; Thein et al., 
2008; Barcena-Uribarri et al., 2010; Kenedy et al., 
2014). Skare and colleagues initially showed that 
P66 forms pores in artificial membranes with an 
atypical huge single channel conductance of 9.6 nS 
in 1 M KCl (Skare et al., 1997). In later experiments 
by Pinne et al. (Pinne et al., 2007) using FPLC-
purified protein, P66 exhibited voltage-dependent 
closure of the channels although at higher voltages. 
The zero-current membrane potential was –5 mV for 
an five-fold KCl-gradient, which means that the 
permeability ratio PK/PCl was about 0.77 as 
calculated from the Goldman–Hodgkin–Katz equation 
(Benz et al., 1979). This suggests that P66 is 
permeable to anions and cations. Incubation of 
purified P66 with corresponding polyclonal rabbit 
antiserum resulted in total loss of the 11 nS channel-
forming activity (Pinne et al., 2007). 

A channel sizing analysis, examining single-channel 
conductance in black lipid bilayers in the presence of 
different non-electrolytes with known hydrodynamic 
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radii, showed that non-electrolytes with hydro-
dynamic radii smaller than 0.34 nm entered the pore, 
whereas non-charged molecules with a greater 
radius were non-permeable. The effective diameter 
of the P66 channel lumen was determined to be ~1.9 
nm, with a central constriction of about 0.8 nm 
(Barcena-Uribarri et al., 2013). As derived from 
single- and multichannel experiments, the P66-
induced membrane conductance could be blocked by 
80–90% after addition of the non-electrolytes PEG 
400, PEG 600 and maltohexaose in the low 
millimolar range (Barcena-Uribarri et al., 2013). The 
blockage of one P66 single-channel conductance unit 
of 11 nS occurred by seven or eight subconducting 
states, indicating a heptameric or octameric 
constitution of P66. This could be confirmed by Blue 
native PAGE and immunoblot analysis which 
revealed that P66 forms a complex with a 
corresponding mass of approximately 440 kDa 
(Barcena-Uribarri et al., 2013). Of note, other Borrelia 
species, including the relapsing fever spirochaetes B. 
duttonii, B. recurrentis and B. hermsii, also carry P66 
homologs (Lescot et al., 2008) with inter-species 
amino ac id ident i t ies o f 41% but s imi lar 
physicochemical properties; all form large pores with 
single-channel conductances between 9 and 11 nS 
(Barcena-Uribarri et al., 2010). 

The second known function of P66, as a ligand for 
β3-chain integrins, was initially revealed using a 
phage display library of total genomic B. burgdorferi 
DNA (Coburn et al., 1999; Antonara et al., 2007). In 
follow-up studies, a synthetic peptide corresponding 
to P66 amino acids 203–209, i.e, within the region 
panned from the phage display library, inhibited B. 
burgdorferi attachment to integrin αIIbβ3 (Defoe and 
Coburn, 2001), while targeted mutagenesis of the 
same domain led to P66 mutants that were deficient 
in binding to αvβ3 integrin (Coburn and Cugini, 
2003). About a decade later, P66-mediated integrin 
binding was shown to play a role in bacterial escape 
from the site of entry and further dissemination into 
the tissues in the mammalian host (Ristow et al., 
2012; Ristow et al., 2015), likely by interactions with 
integrins found on different immune cells, blood 
platelets and endothelial cells. Most recently, 
intravital imaging of B. burgdorferi in a mouse model 
of infection demonstrated the importance of P66 for 
vascular transmigration (Kumar et al., 2015). 
Together, these studies firmly establish the role of 
P66 in vascular spread of the bacterium. Of note, 
site-directed mutagenesis of the P66 integrin binding 

domain revealed that binding activity is distinct from 
porin activity (Ristow et al., 2015). 

The precise structure of P66 remains undetermined, 
although available data point to the formation of a 
large beta-barrel. Early experiments already 
predicted and then confirmed surface-exposed 
epitopes (Bunikis et al., 1995; Probert et al., 1995), 
with a major antigenic surface loop being protected 
by Osp lipoproteins, in particular OspA, from access 
of both antibodies and trypsin (Bunikis and Barbour, 
1999) - whether the role of this interaction extends 
beyond this shielding function remains to be 
determined. Structural modeling based on the 
surface accessibility of this loop and circular 
dichroism spectrometry suggests that P66 forms a β-
barrel with either 22 or 24 transmembrane domains 
(Kenedy et al., 2014). 

DipA 
Borrelia spirochaetes are – due to their small 
genomes – metabolically and biosynthetically 
deficient, thereby making them highly dependent on 
nutrients provided by their various hosts (see 
Chapter 6 by Gherardini et al.). With neither P13 or 
P66 displaying any substrate specificity, the search 
for nutrient-specific porins continued. The OM porin 
Oms38 was discovered in the OM fractions of RF 
Borrelia and is highly conserved in B. duttonii, B. 
hermsii and B. recurrentis (Thein et al., 2008). In 
black lipid bilayers, purified Oms38 formed water-
filled pores of small conductance (80 pS in 1 M KCl) 
that were selective for anions. Further analyses of 
analogous proteins in LD borreliae revealed a 36-kDa 
protein (BB0418) with sequence and functional 
similarity to Oms36 in RF Borrelia (Thein et al., 
2012) . The prote in, des ignated DipA ( for 
dicarboxylate-specific porin A), has an average 
single-channel conductance of 50 pS in 1 M KCl. 
DipA is selective for anions with a ratio of 
permeability for cations over anions of 0.57 in KCl 
and does not show voltage-dependent closure. The 
permeation of KCl through the channel could be 
partly blocked by titrating the DipA-mediated 
m e m b r a n e c o n d u c t a n c e w i t h i n c r e a s i n g 
concentrations of different organic di- and 
tricarboxylic anions. Particular high stability constants 
up to 28,320 l/mol (in 0.1 M KCl) were obtained 
among the 11 tested anions such as oxaloacetate, 2-
oxoglutarate and citrate. The obtained results imply 
that DipA does not form a general diffusion pore, but 
a porin with a binding site specific for dicarboxylates 
which play important key roles in the deficient 
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metabolic and biosynthetic pathways of Borrelia 
species (Thein et al., 2008; Thein et al., 2012). 

Outer membrane glycolipids 
Lipids constitute roughly 25-30 % of B. burgdorferi 
dry weight, of which >36% correspond to glycolipids 
(Hossain et al., 2001; Ben-Menachem et al., 2003). 
Early studies on glycolipids focused on their antigenic 
role in Lyme disease (Eiffert et al., 1991; Wheeler et 
al., 1993) while their structural analysis (Hossain et 
al., 2001; Ben-Menachem et al., 2003; Schroder et 
al., 2003; Stubs et al., 2009; Stubs et al., 2011) and 
biophysical properties (Huang et al., 2016) were later 
studied.  

While lipoproteins are significant contributors to the 
immune response in Lyme disease patients and 
therefore, useful markers for serological diagnostic 
tests, several studies also noted the contribution of 
Borrelia lipids to the immune response. For example, 
Borrelia fatty acids and carbohydrates strongly 
reacted with sera containing anti-B. burgdorferi 
antibodies (Eiffert et al., 1991), which supported that 
B. burgdorferi lipids could mediate in antibody 
responses. Further studies showed that two lipid 
fractions from B. burgdorferi were recognized by sera 
collected from patients with Lyme disease (Wheeler 
et al., 1993) and some of the components of these 
antigenic fractions were identified as glycolipids 
(Wheeler et al., 1993). Interestingly, a subset of Lyme 
disease patients with neuroborreliosis had IgM 
antibodies that reacted to gangliosides with a Gal 
(β1-3) GalNac terminal sequence (Garcia Monco et 
al., 1993). Subsequent studies in rats proved that 
purified lipid fractions of B. burgdorferi elicit high 
levels of IgM antibodies that cross-reacted with 
asialo-GM1 and GM1 (Garcia-Monco et al., 1995). 
Conversely, sera of rats immunized with asialo-GM1 
produced antibodies that cross-reacted with B. 
burgdorferi antigens (Garcia-Monco et al., 1995). 
These studies showed the antigenic potential of 
Borrelia lipids and opened the possibility, not yet 
resolved, that the pathogenesis of Lyme disease 
could be driven, at least in part, by cross-reaction 
between Borrelia glycolipids and host lipids. More 
recently, it was shown that glycolipids also produce a 
strong IgG antibody response in patients with Lyme 
arthritis (Jones et al., 2009), which supports that host 
antibody responses to glycolipids are not limited to 
Lyme disease patients with central nervous 
involvement. Several studies have purified, 
characterized and confirmed their immunogenicity 
(Hossain et al., 2001; Ben-Menachem et al., 2003; 

Schroder et al., 2003; Stubs et al., 2009; Stubs et al., 
2011). 

It was not until the beginning of the 21st century that 
several studies shed light on the structure of lipids in 
B. burgdorferi. A study using high-performance thin 
liquid chromatography (TLC) revealed the presence 
of 11 components, including two phospholipids, 
phosphatidylcholine (PC) and phosphatidylglycerol 
(PG), as well as a glycolipid, mono α-galactosyl-
diacylglycerol (MGalD), which contains galactose and 
two fatty acids (Hossain et al., 2001). Shortly 
thereafter, two additional glycolipids containing 
cholesterol were identified, cholesteryl-β-D-
galactopyranoside (CGal) and cholesteryl 6-O-
palmitoyl-β-D-galactopyranoside (ACGal) (Ben-
Menachem et al., 2003; Schroder et al., 2003). Both 
cholesterol glycolipids are very similar in their 
structure, with ACGal having an extra acyl chain 
bound to the galactose group (Ben-Menachem et al., 
2003; Schroder et al., 2003). Glycolipids MGalD, 
CGal, and ACGal are ubiquitous within the B. 
burgdorferi sensu lato complex and are present in 
both pathogenic and non-pathogenic genospecies. 
(Stubs et al., 2009; Stubs et al., 2011). The 
cholesterol glycolipid ACGal is immunogenic and 
recognized by sera from patients with Lyme disease 
but not syphilis (Stubs et al., 2011). Other glycolipids 
that can be found in B. burgdorferi in trace amounts 
are CGlu and ACGlu (Stubs et al., 2009), which are 
the only cholesterol glycolipids present in the 
relapsing fever species Borrelia hermsii (Livermore et 
al., 1978). Although both glycolipids are very similar 
and only differ in the sugar group, ACGal is 
recognized by sera from Lyme disease patients while 
ACGlu is not (Stubs et al., 2011). The specificity and 
immunogenicity of Borrelia glycolipids MGalD and 
ACGal led to their synthesis and evaluation as 
potential vaccine antigens as well as diagnostic 
applications (Pozsgay et al., 2011; Twibanire et al., 
2012; Jager et al., 2019). Glycolipids are present in 
both the outer and inner membranes of Borrelia 
(Toledo et al., 2018a). Nonetheless, the relative 
amount of the non-cholesterol glycolipid MGalD is 
higher in the inner membrane, whereas ACGal and 
CGal are relatively more abundant in the outer 
membrane (Toledo et al., 2018b). A proton nuclear 
magnetic resonance (1H-NMR) spectrum showed 
that the three glycolipids had an equivalent double 
bond content, which supports that the structure and 
biophysical properties of Borrelia glycolipids in the 
outer and inner membranes are similar (Toledo et al., 
2018b)  
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Outer membrane lipid rafts 
Lipid rafts are membrane microdomains that are rich 
in cholesterol and sphingolipids and have a subset of 
specific proteins associated with them (London, 
2002). These microdomains are highly dynamic and 
float freely within the liquid-disorder bilayer of cellular 
membranes but also can cluster together to form 
larger ordered domains (Simons and Ehehalt, 2002). 
Until recently, lipid rafts were associated with 
eukaryotic cells since sphingolipids and cholesterol 
are rare among prokaryotes (London, 2002; 
Bieberich, 2018). Pioneer studies on Bacillus subtilis 
and B. burgdorferi showed that prokaryotes also 
have membrane domains that resemble eukaryotic 
lipid rafts (LaRocca et al., 2010; Lopez and Kolter, 
2010; LaRocca et al., 2013). The presence of lipid 
rafts in B. burgdorferi was first identified while 
studying the mechanism of action of CB2, a 
complement-independent bactericidal antibody 
(LaRocca et al., 2009; LaRocca et al., 2010). The 
CB2 antibody has a very high affinity for its antigen, 
OspB protein, and disrupts the membrane of the 
spirochaete leading to an osmotic shock and 
subsequent death of the bacterium (LaRocca et al., 
2009). The bactericidal action of CB2 is specific to 
Borrelia and depends on the presence of cholesterol 
(LaRocca et al., 2010). Partial depletion of 
cholesterol from the membrane using methyl-β-
cyclodextrin protects the spirochaete from the 
bactericidal effect of the antibody. The bactericidal 
CB2 antibody also recognizes, but does not lyse, an 
E.coli strain that expresses a surface-exposed OspB.  

Transmission electron microscopy showed the 
presence of cholesterol-rich microdomains from in 
vitro- and in vivo-derived spirochaetes after tagging 
cholesterol glycolipids with 6 nm colloidal gold 
particles (LaRocca et al., 2010; LaRocca et al., 2013; 
Toledo et al., 2014). One of the characteristics of lipid 
rafts is that they form fluid microdomains enriched in 
cholesterol and sphingolipids that are more ordered 
and tightly packed than the surrounding bilayer 
(London, 2002; Simons and Ehehalt, 2002). The 
properties of Borrelia cholesterol-rich domains were 
studied using biophysical approaches, including 
anisotropy and fluorescence resonance energy 
transfer (FRET). Anisotropy experiments conducted 
on vesicles made out of total lipid extracts, as well as 
on live spirochaetes, confirmed the presence of 
temperature-dependent ordered domains. (LaRocca 
et al., 2010; LaRocca et al., 2013; Toledo et al., 
2014). Similarly, weak FRET, measured as the ratio 
of fluorescence intensity with acceptor to that without 

acceptor (F/F0), supported the co-existence of 
temperature-dependent ordered (rafts) and 
disordered domains in the membrane of the 
spirochaete (LaRocca et al., 2010; LaRocca et al., 
2013; Toledo et al., 2014) 

In contrast to eukaryotic cells, Borrelia does not have 
sphingolipids. Sphingolipids are critical components 
of eukaryotic lipid rafts (Brown and London, 2000; 
Bieberich, 2018), which raised questions about the 
biophysical properties of Borrelia microdomains and 
whether the same principles of lipid raft formation 
apply to prokaryotic and eukaryotic organisms. 
Cholesterol substitution experiments performed in 
live spirochaetes using sterols with different 
biophysical properties, ranging from raft-supporting to 
raf t - inhibi t ing when mixed with eukaryot ic 
sphingolipids, proved that sterols are necessary and 
sufficient for the formation of lipid rafts in the 
spirochaete (Crowley et al., 2013). Raft-supporting 
sterols also formed detergent-resistant membranes, 
and saturated acyl chains were required for 
biotinylated probes to partition within lipid rafts, 
supporting that cholesterol-rich domains in Borrelia 
have the hallmarks of eukaryotic lipid rafts (LaRocca 
et al., 2013).  

The role of different lipids in the formation of rafts is 
crucial in understanding the organization of the outer 
membrane of B. burgdorferi. The most abundant 
lipids in Borrelia, including ACGal, MGalD, and PC, 
were purified and used to make vesicles in order to 
study the principles that govern raft-formation. 
Experiments using vesicles made of ACGal, MGalD 
and PC and their mixtures, analyzed by FRET and 
anisotropy, proved that ACGal was the primary lipid 
responsible for order (raft) domain formation and that 
its role was similar to that observed for cholesterol in 
eukaryotic rafts (Huang et al., 2016). In contrast to 
unsaturated PC or Borrelia MGalD, the level of 
saturation detected in Borrelia PC by NMR was 
relatively high, which facilitates domain formation by 
taking a similar role as to sphingolipids in eukaryotic 
rafts (Huang et al., 2016).  

The first evidence that lipid rafts in Borrelia were 
molecular platforms that contain a subset of specific 
proteins came from co-localization experiments using 
transmission electron microscopy. Cholesterol 
glycolipids formed discrete domains on the surface of 
the spirochaete associated with lipoproteins OspA 
and OspB (LaRocca et al., 2010). Depletion of 
cholesterol from the spirochetal outer membrane 
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using methyl-β-cyclodextrin disrupted lipid rafts as 
well as the proteins associated with them (LaRocca 
et al., 2010; Toledo et al., 2015). The protein content 
of lipid rafts was determined by mass spectrometry 
(Toledo et al., 2015; Toledo et al., 2018a).  

The proteome of outer membrane lipid rafts provided 
a consistent set of selected lipoproteins, proteases 
and sensing molecules, some of which are 
prokaryotic homologs of eukaryotic lipid raft markers 
(Toledo et al., 2015; Toledo et al., 2018b). It is not 
surprising that the proteome was enriched in acylated 
proteins since fatty acylation is one mechanism for 
targeting proteins to lipid rafts (Moffett et al., 2000). 
Two of the most abundant proteins found in rafts 
were OspA and OspB. Both lipoproteins are 
predominantly expressed during the tick phase 
(Fingerle et al., 1995; Schwan et al., 1995) and 
mediate in the adhesion of the spirochaete to the tick 
midgut (Yang et al., 2004; Battisti et al., 2008). 
Nonetheless, a lipid tail is not sufficient to drive 
proteins to rafts since some lipoproteins (e.g., OspC) 
are not associated with these microdomains. The raft 
proteome also included protease HtrA. The Deg/HtrA 
protein family is involved in adaptation to stress 
responses acting either as a chaperone or protease 
to maintain tigh protein quality control (Clausen et al., 
2011). The periplasmic serine protease HtrA is 
present in different subcellular locations, including in 
the IM and OM (Coleman et al., 2013; Russell et al., 
2013; Toledo et al., 2018b) where it is associated 
with lipid rafts (Toledo et al., 2018b). In the periplasm, 
the enzyme degrades unfolded proteins such as 
flagellin (Zhang et al., 2019). Nonetheless, in vitro 
experiments showed that a recombinant BbHtrA also 
degrades membrane proteins including P66 and 
BB0323 that co-localize with the protease in outer 
and inner membrane rafts, respectively (Kariu et al., 
2015; Toledo et al., 2015; Coleman et al., 2016). In 
fact, a B. burgdorferi strain that overexpresses HtrA 
showed a two-fold decrease in the levels of P66 
(Coleman et al., 2016), suggesting that co-
localization of proteases and their substrates in rafts 
could facilitate protein degradation. Other proteins 
with important biological functions that were enriched 
in outer membrane rafts included plasminogen 
binding protein ErpA (Brissette et al., 2009) and 
Factor H binding protein CspA (Kenedy et al., 2009). 

The selective association of lipoproteins and their 
contributions to raft formation was assessed using 
OspA and OspB mutants. Single OspA and OspB 
mutants showed no defect in lipid raft formation 

compared to the WT strain. However, B. burgdorferi 
B313, a strain that lacks OspA and OspB as well as 
most of the linear and circular plasmid, showed lower 
fluorescence values by fluorescence resonance 
energy transfer (FRET), which is compatible with less 
or smaller lipid rafts. The WT phenotype was 
recovered when B313 was transformed with a 
plasmid containing OspA but not when it was 
transformed by a plasmid expressing OspC, which is 
not found on lipid rafts. Collectively, these findings 
support a selective association of lipoproteins and 
lipid rafts that favors the formation of these 
microdomains (Toledo et al., 2014).  

The peptidoglycan cell wall 
Sandwiched between outer and inner membranes of 
the B. burgdorferi cell envelope is the peptidoglycan 
(PG) cell wall. PG is a mesh-like, stress-bearing, 
biological sac (i.e. sacculus). The primary role of PG 
is to act as an osmoprotectant, a dynamic bio-fabric 
that prevents the cell from bursting due to the high 
solute concentration in the cytoplasm (Holtje, 1998). 
Apart from combating turgor, PG has additional 
functions. PG is, in essence, the exoskeleton of most 
bacteria as well as the major cell envelope 
component that imparts cell shape (Young, 2006). 
Cell envelope organization is largely dictated by PG 
in that the sacculus often acts as a scaffold and 
provides continuity between layers (Cava and de 
Pedro, 2014). Because the PG layer is porous, it acts 
as a nondiscriminatory sieve for molecules up to 
24kDa (Demchick and Koch, 1996). Apart from 
playing a structural role, PG organization is also 
central to the sub-cellular organization of many cell 
cycle events (Turner et al., 2014). Fragments of PG, 
or muropeptides, are even capable of acting as a 
chemical means of communication between bacteria 
and even kingdoms (Dworkin, 2014). Despite these 
exciting and versatile functions, until recently, the PG 
of B. burgdorferi has been largely ignored. Here we 
consider the unique chemical and structural features 
of B. burgdorferi PG and how these peculiarities may 
be involved in the biology and pathogenesis of Lyme 
disease.  

The PG mesh is composed of two salient features – 
roughly parallel (Verwer et al., 1978) glycan strands 
that are connected by short peptides. Each glycan 
strand contains the repeating disaccharide N-Acetyl 
Glucosamine (GlcNAc) and N-Acetyl Muramic acid 
(MurNAc). The latter is a sugar that is only found in 
bacteria (Vollmer et al., 2008). Disaccharides are 
joined by a ß-1,4 glycosydic bond. Virtually all 
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bacteria follow this glycan strand organization; 
however, modifications that make the linkage 
resistant to lysozyme degradation, such as O-
acetylation, are known to occur in several pathogens 
(Vollmer, 2008). While glycan organization and 
structure are well-conserved among all bacteria, 
some variability exists in the bridging peptides. The 
most common amino acids in the first and second 
position are L-Alanine and D-Glutamine, respectively. 
Variations occur at the third position, but chemical 
constraints require that this position is occupied by a 
dibasic amino acid to complete the cross-bridge with 
the neighboring peptide chain. Most gram-negative 
bacteria incorporate diaminopimelic acid (DAP) as 
the diamine, in the third position, while gram-positive 
bacteria carry Lysine (Lys) at the analogous position 
(Desmarais et al., 2013). Deviations from this 
dichotomy are rare (Vollmer, 2008). Di-D-Alanine 
terminate the pentapeptide and are the substrate(s) 
for Penicillin-binding protein (PBP) transpeptidase 
reactions, reactions that are required for remodeling 
the overall PG structure during sacculus elongation. 

B. burgdorferi PG has several unusual features that 
deviate from convention. For instance, L-Ornithine (L-
Orn) occupies the third position of the stem peptide, 
linked to a single Glycine (Gly) residue (Beck et al., 
1990; Jutras et al., 2019). Several earlier reports 
show that some spirochaetes, including the relapsing 
fever agent Borrelia hermsii and treponemes 
incorporate L-Orn into PG (Azuma et al., 1975; 
Yanagihara et al., 1984; Caimano et al., 1999). The 
amidation of DAP – a common PG modification 
(Vollmer, 2008) – has the exact same mass as L-Orn-
Gly. Thus, a more indepth analysis may be required 
to validate earlier findings ((Azuma et al., 1975; 
Yanagihara et al., 1984). Nevertheless, recent 
radiolabeling studies, coupled with tandem liquid 
chromatography/liquid scintillation (Jutras et al., 
2019), confirmed the presence of L-Orn-Gly in B. 
burgdorferi PG. The same study uncovered a 
surprising alteration in glycan strand composition, 
providing evidence for a yet to be identified N-
acetylated Hexose (HexNAc). Our high-resolution 
analysis of B. burgdorferi PG has both confirmed the 
presence of a third HexNAc, while identifying 
amidated Glutamine as another modification (DeHart 
and Jutras, unpublished data). The biological 
relevance of these uncommon PG alterations 
remains to be determined.  

The structural architecture of B. burgdorferi PG is 
beginning to be elucidated. Composition and 

abundance of muropeptide profiles indicate that, on 
average, B. burgdorferi glycan strands are 30 
disaccharides long (Jutras et al., 2019), which 
equates to ~30nm. In comparison, this is roughly 
similar to the glycan strand length of Escherichia coli 
grown under normal conditions. Glycan strands lie 
perpendicular to the long axis (Gan et al., 2008). 
When we consider the diameter of the spirochetal 
cell— 5 times smaller than E. coli— the number of 
strands required to cover the B. burgdorferi cell 
circumference (~20) is miniscule relative to other 
PGs previously analyzed (Vollmer and Seligman, 
2010). Of the peptides present in B. burgdorferi PG, 
approximately 40% are participating in cross-linking 
glycan strands (Jutras et al., 2019). In line with this 
observation, free stem peptides are devoid of 
terminal D-Alanine(s); their detection required a high-
resolution, targeted MS approach (Jutras et al., 
2016). The degree of cross-linking may be involved 
in the seemingly non-uniform distribution of B. 
burgdorferi PG. Cryo-electron tomography images of 
intact B. burgdorferi cells show that the thickness of 
the PG layer varies from ~6 nm at mid-cell to ~40 nm 
at the poles (Figure 3A). Preliminary analysis of 
purified sacculi suggests that poles may be 
reinforced with multiple layers of PG (Brock, Liu, and 
Jutras, unpublished data) – yet another unusual 
feature and paradigm shift from the ~1-layer model 
for diderms (Gan et al., 2008). 

Why do Borrelia, and seemingly other spirochaetes 
(DeHart and Jutras, unpublished data), produce PG 
with unusual chemical and structural features? Unlike 
most bacteria, Borreliae and Treponema possess 
periplasmic flagella form a ribbon that wrap around 
the cell cylinder (Charon et al., 2009) and are 
inserted, sub-terminally, at each pole. The natural 
flat-wave morphology is created by the inherent 
helicity of the collective flagellar filaments (Motaleb et 
al., 2000). Together, many studies support an 
unusual paradigm as it relates to PG and cell 
morphology – PG doesn’t impart cell shape in 
Borrelia and treponemes (Charon et al., 2012). 
Instead, the PG – a straight rod when purified (Jutras 
et al., 2016) – pushes against the helical pitch 
created by the filaments, indicating that Borrelia 
flagella are the actual cytoskeletal structure. Flagellar 
motors are anchored into the PG layer and their 
rotation (and thus movement) produces immense 
torque on the cell cylinder. To protect cytoplasmic 
contents, PG produced by most spirochaete must be 
exceptionally flexible in order to exert counter force 
against the torque of the flagellar filaments (Charon 
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et al., 2009). PG chemistry and structure are likely to 
be important in the elasticity of the biopolymer. 
Several lines of evidence support this notion. First, in 
order to create flat-wave morphology, mathematical 
modeling suggests that the PG of B. burgdorferi be 
more flexible than other, helical-shaped spirochaetes 
that do not possess L-Orn-type PG (Wolgemuth et 
al., 2006; Dombrowski et al., 2009; Slamti et al., 
2011). Treating B. burgdorferi with vancomycin, an 
inhibitor of PG transpeptidation and cell wall 
architecture, alters both PG stiffness and bacterial 
motility (Harman et al., 2017). Finally, recent data 
indicate that mutations in PG synthesis enzymes that 
result in altered PG peptide composition cause a 
dramatic change in cell morphology (MecClune and 
Jutras, unpublished data), which raises the notion 
that that B. burgdorferi PG may have evolved to 
strike the perfect biophysical balance with the 
spirochaete motility machinery (DeHart and Jutras, 
unpublished data). 

There may be unintended consequences of having 
atypical PG. B. burgdorferi is considered by many to 
be a stealth pathogen. Many of the ill effects during 
the course of LD infection are propagated by the 
human host response. As B. burgdorferi elongates its 
PG sacculus, it sheds muropeptides – 45% of all PG 
inside the cell is released per generation (Jutras et 
al., 2019). Released muropeptides are known to act 
as host immune modulatory molecules in other 
pathogens. For instance, Neisseria gonorrhoeae 
release many different muropeptides (Sinha and 
Rosenthal, 1980; Garcia and Dillard, 2008), most of 
which are cytotoxic and play a critical role in 
pathogenesis (Melly et al., 1984; Cloud-Hansen et 
al., 2008; Chan and Dillard, 2016; Schaub et al., 
2016; Chan and Dillard, 2017; Lenz et al., 2017). 
Another gram negative, Helicobacter pylori both 
releases and injects PG breakdown products during 
mammalian infection to modulate host response 
(Viala et al., 2004; Gorrell et al., 2013; Irving et al., 
2014). Tracheal Cytotoxin (TCT), one of the first 
bacterial molecules to demonstrate toxin activity 
(Goldman et al., 1982) is indeed a released 
muropeptide produced by Bordetella pertussis 
involved in whooping cough pathology (Goldman et 
al., 1982; Heiss et al., 1993; Heiss et al., 1994; Flak 
and Goldman, 1999). 

Transport proteins and complexes 
Transport proteins catalyze the translocation of 
solutes by various systems that differ with respect to 
energy coupl ing, substrate speci f ic i ty and 

transmembrane topology. So far, four distinct types of 
functionally characterized transport systems have 
been described. These are (i) bacterial channel 
proteins, (ii) secondary transporters that utilize 
chemo-osmotic energy, i.e. proton gradient, (iii) 
primary transporters utilizing chemical energy, 
typically in the form of ATP, and (iv) group 
translocators that phosphorylate their substrates 
during transport (PTS). From a comparative genome 
analysis of transporters from 18 different prokaryotes 
by Paulsen and co-workers (Paulsen et al., 2000), it 
appeared that, relative to genome size, the 
spirochaetes B. burgdorferi and T. pallidum have few 
transporters, particularly secondary transporters 
(Saier and Paulsen, 2000). Interestingly, both 
spirochaetes contained the lowest numbers of 
transmembrane segments and transporters as 
compared to other bacteria (Paulsen et al., 2000). In 
another comparative study of 215 protein-
translocation outer membrane porins of Gram-
negative bacteria, only the TolC homologue (BB0142) 
that belongs to the outer membrane factor (OMF) 
family was identified in B. burgdorferi (Yen et al., 
2002). Among the bacteria compared, B. burgdorferi 
has the largest percentage of phosphotransferase 
system (PTS) permeases. Notably B. burgdorferi also 
encodes a large number of peptide transporters 
(Paulsen et al., 2000). 

Within the OMF family are the so called channel-
tunnels which are engaged in exporting substances 
across the membranes of Gram- negative cell 
envelopes. This family incorporates the efflux pumps, 
which confer resistance to various harmful 
substances like antibiotics, heavy metals, dyes, bile 
salts and detergents. Efflux pumps consist of an 
inner membrane transporter, a periplasmic accessory 
protein and an outer membrane channel-tunnel. The 
well-studied E. coli channel-tunnel, TolC, is involved 
in protein secretion and can also be part of diverse 
efflux pumps (Andersen et al., 2000). The RND 
(resistance-nodulation division) transporters (Li and 
Nikaido, 2004) exist in all kingdoms of living 
organisms but seem to be involved in drug 
resistance, especially in Gram-negative bacteria, in 
which they export toxic substances across the cell 
envelope in a single energy-coupled step (Koronakis 
et al., 2000). The TolC crystal structure has been 
solved and consists of channel, equatorial, and 
tunnel domains (Koronakis et al., 2000). The channel 
domain is embedded in the outer membrane and 
consists of non-polar residues directed towards lipids 
and polar residues that locate to the interior resulting 
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in typical amphipathic β-strands. The β-barrel of 
channel-tunnel is different from those of typical porins 
formed by single peptide chain. To form a TolC 
channel domain, three protomers are necessary in 
order to generate a single 12-stranded β-barrel. The 
tunnel domain of TolC consists entirely of α-helices 
assembled in an α-barrel, representing a unique 
structure. In the B. burgdorferi outer membrane, a 
channel-forming activity corresponding to a TolC 
homologue, BesC, has been identified, which is part 
of a putative export system comprising the 
components BesA, BesB and BesC (Bunikis et al., 
2008). BesC forms channels in planar lipid bilayers. A 
structural model of the efflux apparatus was 
described showing the putative spatial orientation of 
BesC with respect to the AcrAB homologues BesAB. 
This structural modelling showed both similarities and 
differences between TolC of E. coli and BesC of B. 
burgdorferi (Bunikis et al., 2008). For TolC, it is well 
known that residues lining the periplasmic entrance 
are critical for the electrophysiological behaviour. A 
ring consists of six aspartate residues at the TolC 
tunnel entrance, viewed from the periplasm, is 
believed to be responsible for its high cation 
selectivity (Andersen et al., 2002). In BesC, the 
aspartate ring is replaced by positively charged lysine 
residues (K366) and negatively charged aspartate 
residues (D363), resulting in no net charge at the 
tunnel entrance and, thus, a non-selective BesC 
channel (Bunikis et al., 2008). Another difference 
between BesC and TolC is that the BesC channel 
has a nearly four-fold higher conductance in 1 M KCl 
than TolC (80 pS in 1 M KCl) (Benz et al., 1993). 
Bunikis and coworkers further demonstrated that the 
BesC protein was necessary for B. burgdorferi to 
establish infection in mice and also is involved in 
antibiotic resistance. This efflux system might be part 
of a Type I secretion machinery for maintenance of 
cellular homeostasis or export of exogenous toxic 
agents, perhaps also necessary for survival in vastly 
different host environments (Bunikis et al., 2008). An 
additional finding from the structural modelling of 
BesA is the lack of the α-hairpin domain creating a 
different adaptor structure as compared to E. coli 
(Bunikis et al., 2008). This modelling was 
subsequently verified by a high resolution structure 
analysis of BesA that confirmed the missing α-hairpin 
domain of the periplasmic adaptor protein (Greene et 
al., 2013). Furthermore, a primary sequence 
comparison revealed that this paradigm shift of 
adaptor structure is not unique to Borrelia as it also 
was found in other spirochaetes, including 
Treponema and Spirochaeta (Greene et al., 2013). 

The genome of B. burgdorferi encodes a large 
amount of homologous carbohydrate transporters 
that belong to the PTS group (Fraser et al., 1997). A 
number of studies have attempted to characterize 
some of these transporters. Chitobiose is a 
component of the tick cuticle and peritrophic matrix. 
The products of chbA, chbB, and chbC allow Borrelia 
to transport and utilize chitobiose in the tick 
environment (Tilly et al., 2001; Tilly et al., 2004). 
Different chb genes may respond differently to 
various temperatures – chbB transcription is up-
regulated at 23°C, whereas chbC transcription 
increases at 35°C (Ojaimi et al., 2003). Glucose is 
the major energy source for B. burgdorferi involving 
several PTS glucose transporters (von Lackum and 
Stevenson, 2005). BBB29 is one of the components 
of a glucose transporter system of B. burgdorferi 
(Byram et al., 2004). BBB29 expression is elevated in 
a B. burgdorferi non-disseminating clinical isolate 
compared to a disseminating isolate (Ojaimi et al., 
2005) and at 23°C versus 35°C (Ojaimi et al., 2003). 
Mannose-modified host proteins are also a likely 
carbohydrate source for B. burgdorferi, with the 
BB0408 and BB0629 proteins suggested to be 
mannose transporters (von Lackum and Stevenson, 
2005).  

The members of major intrinsic protein (MIP) group 
consists of essential channel forming proteins that 
maintain an osmotic cell equilibrium and include 
aquaporins and glycerol facilitators (GlpF) (Paulsen 
et al., 2000; Froger et al., 2001). The GlpF 
homologue in B. burgdorferi (BB0240) is involved in 
glycerol uptake, which can either be used as an 
energy source or for phospholipid and lipoprotein 
biosynthesis (Schwan et al., 2003). The process of 
glycerol uptake (glpF) and utilization (glpK/bb0241 
and glpA/bb0243) might be required when Borrelia 
resides in its arthropod host since these glp genes 
are significantly up-regulated in B. burgdorferi grown 
at 23°C versus 35°C (Ojaimi et al., 2003). 

Inner membrane transmembrane proteins 
The oligopeptide permeases (Opps) belong to the 
family of ATP-binding cassette (ABC) transporters 
used for transportation of peptides into bacteria to be 
subsequently used as carbon and nitrogen sources 
(Lazazzera, 2001). Although the major role of 
bacterial Opp is in nutrient uptake, they may also be 
involved in sensing environmental signals in the form 
of peptides leading to diverse responses, including 
expression of virulence determinants, quorum 
sensing, chemotaxis, sporulation, conjugation, and 

195



The Borrelia Cell Envelope                                                                                                                                                                                   Zückert et al.

competence (Perego et al., 1991; Rudner et al., 
1991; Leonard et al., 1996). It is not known if the 
oligopeptide permease has a sensing capability in B. 
burgdorferi s.l. similar to other bacteria although an 
interesting feature to note is that Opp-like proteins 
are involved in expression of virulence determinants 
in other bacteria (Payne and Gilvarg, 1968; Goodell 
and Higgins, 1987; Finlay and Falkow, 1989; 
Gominet et al., 2001). The Opp complex in B. 
burgdorferi consists of an oligopeptide-binding 
lipoprotein OppA, a heterodimeric cytoplasmic 
membrane permease (OppB and OppC), and the 
nucleotide binding domain (NBD) heterodimer OppD 
and OppF that drives the transport of oligopeptides 
using ATPases (Das et al., 1996; Bono et al., 1998; 
Kornacki and Oliver, 1998; Monnet, 2003; Groshong 
et al., 2017). Interestingly, B. burgdorferi has five 
oppA genes each controlled by promoters which 
respond differently to various environmental signals 
(Wang et al., 2002; Ojaimi et al., 2003). However, 
oppA genes can also be coordinately up-regulated in 
B. burgdorferi clinical isolates with different capacities 
for haematogenous dissemination (Ojaimi et al., 
2005). Perhaps each OppA possesses a different 
substrate binding affinity that is active during different 
stages of B. burgdorferi life cycle (Wang et al., 
2004a), which would attribute to the targeting and 
penetration of specific tissues in invertebrate and 
vertebrate hosts (Ojaimi et al., 2005). The Opp 
system is particularly interesting in B. burgdorferi s.l. 
since it was evident from the genome sequence that 
only rudimentary machinery for synthesis or transport 
of amino acids exists. In fact, only a single intact 
peptide transporter operon could be found. From the 
genome analysis of B. burgdorferi s.l. it is also 
apparent that the oppA operon differs from that of E. 
coli as it has three separate chromosomally encoded 
substrate binding proteins (Lin et al., 2001; Wang et 
al., 2002), OppA-1, 2 and 3 and two additional 
plasmid encoded homologues OppA-4 and 5 (Wang 
et al., 2002). Interestingly, all of the B. burgdorferi s.l. 
OppA proteins were found to complement E. coli 
OppBCDF to form a functional peptide transport 
system for nutritional purposes (Lin et al., 2001). All 
five oppA genes have their own active promoters, 
and the apparent difference in regulation of gene 
expression implies that the oppA genes respond by 
different environmental signals for the adaptation of 
the Borrelia spirochaetes to various hosts (Wang et 
al., 2002). There was also a considerable difference 
in the substrate specificities of the five different OppA 
proteins, which suggest that they may have separate 
functions in the spirochaete (Wang et al., 2004a). 

These findings led to an in depth investigation of the 
factors that regulate the different oppA promoters. 
Thus, the alternative sigma factors, RpoS and RpoN, 
regulate the expression of oppA5 (Caimano et al., 
2007), the BosR/Fur homologue of Borrelia interacts 
with the oppA4 promoter, and another candidate 
transcription factor, EbfC, interacts with the oppA5 
promoter (Medrano et al., 2007) (see chapter five by 
Samuels et al.). In a very elegantly executed study by 
Groshong and coworkers, structural analyses and 
modeling explain how the five oligopeptide binding 
proteins (OBPs) interact with variable peptide 
fragments. Transcriptional analyses of the different 
OBPs further indicated that they are both 
independently regulated and sensing different signals 
whereas the permeases and NBDs are constitutively 
expressed (Groshong et al., 2017). This study further 
showed the importance of peptide uptake for 
virulence and physiology of Borrelia spirochaetes.  

Inner membrane lipid rafts 
The presence of inner membrane proteins, including 
HflC, HflC, FtsH, among others, in the proteome of 
lipid rafts, was the first indirect evidence that these 
microdomains exist in both membranes (Toledo et al., 
2015). The lipid profiles of the inner and outer 
membranes are very similar and contain the same 
lipid species, including cholesterol, cholesterol 
esters, ACGal, CGal, MGalD, PC and PG (Toledo et 
al., 2018b). The main difference between the lipid 
composition of the two membranes is the relative 
amount of glycolipids. Cholesterol glycolipids, ACGal 
and CGal, are relatively more abundant in the outer 
membrane than in the inner membrane, whereas the 
non-cholesterol glycolipid, MGalD, is more abundant 
in the inner membrane. Multilamellar vesicles (MLVs) 
prepared from isolated lipids from both membranes 
showed ordered (rafts) and disordered domains, as 
measured by FRET and anisotropy. However, they 
exhibited different levels of membrane order and 
domain segregation (Toledo et al., 2018b). These 
differences could be attributed, at least in part, to the 
presence of higher quantities of ACGal in the outer 
membrane, since ACGal is the primary lipid 
implicated in raft formation (Huang et al., 2016). 
Another factor that might contribute to the differences 
observed between both membranes is the level of 
saturation of PC, which is significantly higher in the 
outer membrane compared to the inner membrane 
(Toledo et al., 2018b).  

The proteome of inner membrane lipid rafts is 
enriched in proteins involved in trafficking, signaling 
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and contains proteases, including HtrA and FtsH, as 
well as lipid rafts markers. The proteome included 
HflC/K proteins, which have Stomatin Prohibitin 
Flotillin HflC/K (SPFH) domains (Rivera-Milla et al., 
2006). Proteins with SPFH domains are very diverse 
and have different functions, but they partition in lipid 
rafts and are commonly used as lipid raft markers 
(Browman et al., 2007). In contrast to HtrA, FtsH is 
only associated with the inner membrane, although it 
is unclear whether FtsH partition in lipid rafts or is 
recruited by HflC/K, which are transmembrane 
regulators of FtsH (Kihara et al., 1997). FtsH is 
essential for the viability of the spirochaete in vitro 
and in vivo and its independent of regulators HflC/K 
(Chu et al., 2016). The substrates for FtsH in Borrelia 
are unknown, but in E. coli FtsH degrades 
membrane-embedded proteins such as SecY and 
SecD as well as soluble substrates (Kihara et al., 
1995; Chiba et al., 2002). Interestingly, Sec proteins, 
including SecA and SecD, are enriched in lipid rafts 
in the inner membrane (Toledo et al., 2018b) and are 
potential substrates of FtsH. Similarly, inner 
membrane lipid rafts also were enriched in ABC 
transporters (BB0330, BB0334, BB0335, BB0466, 
BB0754 and BBB16, among others) and methyl 
chemotaxis proteins (BB0596, BB0597), core 
sensing elements in prokaryotes (Salah Ud-Din and 
Roujeinikova, 2017). In summary, inner membrane 
lipids rafts, based on their protein content, are 
associated with protein trafficking and signaling 
processes, whereas outer membrane lipid rafts 
discussed earlier are rich in proteins associated with 
adaptation and survival to tick and vertebrate milieus.  

The cell cycle and cell division 
The bacterial cell cycle – the life of a single cell from 
birth to division – is riddled with challenging events 
that need to be coordinated in both time and space. If 
one were to think of the cell like a water balloon - the 
envelope being the elastic balloon, and the 
cytoplasmic contents the water - we can start to 
understand the challenges. To grow, the balloon 
needs to physically expand and divide, not just 
stretch, while controlling the distribution and 
displacement of the water. To divide, the balloon 
needs to be cut in half, and each new end needs to 
be fabricated, all without spilling the water. This 
seems like an insurmountable feat, and yet, all 
bacteria perform these tasks rapidly and virtually 
mistake free. The key is controlling the timing and 
spatial arrangement of enzymes involved in cell 
envelope elongation with the machinery necessary 
for division. Here, we discuss these processes, 

highlight some of the recent findings in understanding 
these events, and discuss the implications in the 
context of Lyme disease treatment. 

The PG sacculus is akin to the aforementioned 
balloon – a big molecular bag that surrounds the 
cytoplasm. Cell growth requires PG elongation. Cell 
division means that the sac is cut and PG poles are 
formed. Thus, by tracking PG synthesis we can 
understand all facets of the B. burgdorferi cell cycle. 
Recent advances in chemical synthesis have made 
tracking PG biogenesis possible. The covalent 
attachment of fluorophores, with different physical 
and spectral properties (Hsu et al., 2017), to the 
ubiquitous PG component D-Alanine (D-Ala), has 
furthered our understanding of how bacteria grow 
(Kuru et al., 2012). While there are always incredible 
exceptions in nature (Caccamo and Brun, 2018), 
most bacteria grow using one of the three following 
strategies. (i) Many rod-shaped bacteria elongate 
their cell wall by lateral synthesis, which involves 
near homogenous growth throughout the cell cylinder 
prior to septal synthesis at division (Figure 2A). (ii) 
Some rod-shaped bacteria, like Agrobacterium 
tumefaciens and Mycobacterium tuberculosis, have 
an alternative mode of growth – elongating from 
either one or both poles, respectively (Figure 2B) 
(Kuru et al., 2012; Garcia-Heredia et al., 2018). (iii) 
Most coccoids replicate by simply producing two 
halves of each daughter cell, also known as septal 
synthesis (Figure 2C). Once again, B. burgdorferi has 
deviated from convention. Feeding B. burgdorferi 
fluorescent D-Ala resulted in an unmistakably unique 
pattern of PG synthesis that seems to combine 
several forms of growth, simultaneously. With the 
exception of 2-4 um at the poles, B. burgdorferi 
elongates by both lateral synthesis and discrete 
zones of intense growth (Jutras et al., 2016). Zones 
are organized in both time and space – a central 
zone of growth is followed by secondary and tertiary 
sites. Despite distances that can exceed 30 um in 
length, each zone precisely forms at the ¼, ½, and ¾ 
positions along the cell length (Figure 2D). The 
primary zone at the ½ position becomes the site of 
cell division in the F0 generation, while the ¼ and ¾ 
positioned zones are the site of cell division in the F1 
generation. In essence, how the mother cell grows 
determines where the daughter cells will divide. Multi-
zonal growth appears to be a unique feature to the 
Borrelia genus. All Borrelia spp. tested, including 
those responsible for relapsing fever, display a 
similar PG growth pattern. Other spirochaetes, such 
as Treponema denticola and Leptospira interrogans, 
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grow through lateral PG synthesis. The mech-
anism(s) responsible for zone placement, across a 
distance 30-50 times longer than the average rod-
shaped cell, requires exquisite spatial and temporal 
balance between the elongation and division 
machinery. 

We know very little about multi-zone, PG synthesis in 
B. burgdorferi. Co-incubation with fluorescent D-Ala 
and D-cycloserine (Kuru et al., 2019), a putative 
inhibitor of cytoplasmic D-Ala-D-Ala synthesis 
(Strominger et al., 1960), leads to the disappearance 
of growth zones in B. burgdorferi, unlike in other 
bacteria. Together, these findings suggest that zones 
of growth are in essence PG synthesis machinery 
hubs that are pre-established. These focal points 
extend into the periplasm, and orchestrate the 
incorporation of muropeptides into nascent PG, since 
there is a near perfect correlation between zones of 
PG synthesis and the localization of Penicillin-
Binding Proteins (PBPs) in B. burgdorferi (Jutras et 
al., 2016). In depth analysis of D-Ala signal, relative 
to PBP signal, suggests that active sites of 
incorporation are more finite and lie inside the 
expanded area of each zone (Brock and Jutras, 
unpubl ished data, and Figure 3B). These 
observations provide clues as to a possible 
mechanism for zone placement (see below). Wu and 
colleagues made a case for an alternative mode of B. 
burgdorferi growth, which only occurs in stationary 
phase cultures, whereby cells grow by polar 
synthesis (Wu et al., 2018). In exponential, or 
s ta t ionary-phase growth, vancomycin – a 
glycopeptide inhibitor of periplasmic PG incorporation 
– eliminated both zonal and polar synthesis (Wu et 
al., 2018). These findings weaken the argument for 
polar growth in stationary phase and provide for an 
alternative, more parsimonious explanation for their 
observation. Late-stage cultures grow slowly, due to 
a depletion of nutrients in the culture media. Recently 
divided bacteria have a single zone of growth and 
polar signal from the previous division event (Figure 
2E). As stationary phase and vancomycin treatment 
continue, slow lateral synthesis continues without 
further zonal growth. Upon reaching the total 
cessation of growth, the previously established zone 
becomes the site of division, which is forced by 
washing and centrifugation prior to image acquisition. 
The resulting cells have either a single pole labeled, 
or both poles, but one with more recent/intense 
signal (Figure 2E). In short, zonal growth and 
experimental conditions, can explain the recent 

observation without inferring a secondary strategy for 
PG synthesis. 

The mechanism(s) that drive zonal growth and its 
placement are not known. Absolute cell length is not 
the impetus since different strains, which achieve 
average lengths that vary by >20um still form zones 
at the same relative ¼, ½, and ¾ positions (Jutras et 
al., 2016). Researchers in the field have long 
recognized the association between motility and cell 
division, as if the forceful torque applied by flagella 
on the cell cylinder is required for final cell separation 
(Motaleb et al. 2000). Be that as it may, a mutant that 
is unable to produce the major flagellar filament 
protein FlaB still faithfully positions zones that are 
correctly placed along the long axis of the cell. B. 
burgdorferi PG zones are truly finite, but extended 
regions of elongation. Photobleaching experiments 
demonstrated that the B. burgdorferi cytoplasm is 
contiguous in cells with three zones, indicating that 
these wide regions (2-4um) are not septa, produced 
by three discrete cells that are chained together 
(Jutras et al., 2016). That said, zones clearly become 
sites of cell division, implicating the cell division 
machinery in zone establishment and placement. 

FtsZ is the most likely candidate for determining both 
the sites of zonal growth, and septal PG synthesis, in 
B. burgdorferi. FtsZ is a tubulin homologue that is 
essential for cell division in virtually all bacteria (Du 
and Lutkenhaus, 2019). FtsZ forms a ring-like 
structure and coordinates the placement and activity 
of nearly 20 proteins in most bacteria; many of which 
are essential for viability under typical growth 
conditions (Egan et al., 2020). The dynamic 
treadmilling behavior of FtsZ (Yang et al., 2017) 
coordinates the location and activity of PG septal 
synthesis machinery (Bisson-Filho et al., 2017), and 
ultimately, cell division. Many of the factors that 
influence FtsZ activity, placement, and cell division 
related processes are present in the B. burgdorferi 
genome, including putative homologues of fts genes 
A, B, E, H, I, K, Q, W, Y, Z. However, the negative 
regulators, whose role is to prevent FtsZ ring 
formation, too early or in erroneous places (e.g. Min 
and SlmA/Noc systems, EzrA, MipZ, etc) (Levin et 
al., 1999; Errington et al., 2003; Wu and Errington, 
2004; Thanbichler and Shapiro; Cho et al., 2011) are 
conspicuously absent. Homologues of so-called 
positive regulators of Z-ring assembly, such as MapZ, 
PomZ, and SsgA/B (Willemse et al., 2011; Treuner-
Lange et al., 2013; Fleurie et al., 2014), are also not 
found in the B. burgdorferi genome. Given the 
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complex genome, in combination with the absolute 
cell length of B. burgdorferi, there are likely 
analogous systems yet to be identified.  

Efforts to produce bacteria with fluorescent protein 
fusions to B. burgdorferi FtsZ, including in cis and in 
trans, have been futile (Pichoff, Zückert and 
Lutkenhaus; Brock and Jutras, unpublished data). 
This includes a strategy whereby a fluorescent 
protein is sandwiched between disordered domains 
in FtsZ (Moore et al., 2017), a hybrid fusion that is 
fully functional in E. coli. These observations suggest 

that B. burgdorferi FtsZ may have unique properties, 
which could explain both the unusual mode of 
Borrelia growth and the unsuccessful attempts to 
localize the protein in live cells. Indeed, unpublished 
data indicate that B. burgdorferi produces two 
isoforms of FtsZ (Brock and Jutras, unpublished 
data). Analysis of the B. burgdorferi ftsZ locus 
provides clues. A primary Ribosome Binding Site 
(RBS), upstream of the annotated Methionine (Met) 
start codon, is followed by an internal RBS and an 
additional Met in the same reading frame. Thus, in 
vitro cultured bacteria produce two variants of FtsZ. 

Figure 2. Different modes of bacterial growth. New fluorescent probes that track PG synthesis have illuminated different bacterial strategies for self-
replication. (A) Lateral growth involves near ubiquitous PG synthesis (blue) throughout the cell cylinder, prior to septal PG synthesis (green) at division. 
(B) Polar growth occurs at one or both ends, only, prior to division. (C) Many spherical bacteria grow by producing two halves of a circle, almost 
exclusively synthesizing a septum. Note some pre-septal (blue) growth, adjacent to the septum, does occur in some species. (D) Ovoccoid bacteria (e.g. 
Streptococcus pneumonia) simultaneously elongate by producing pre-septal zones of PG synthesis, while producing a septum. Prior to septation, pre-
septal zones are apparent in a mother cell. (E) In all Borreliae tested thus far, PG synthesis occurs by both lateral synthesis, and discrete zones of 
elongation. A single zone, at mid-cell, becomes the site of septal PG synthesis. Prior to membrane invagination, secondary and tertiary zones are 
asynchronously established, which will become the sites of division in the following generation. Note that lateral synthesis in B. burgdorferi does not 
occur (gray) at the poles, but post-division, residual signal becomes trapped (red). (F) An alternative explanation for apparent polar growth in B. 
burgdorferi. Lateral signal, at any stage of growth, has never been observed at poles. Upon vancomycin treatment, in stationary phase, primary zonal 
growth is reduced, no other zones are great, and lateral synthesis slowly continues. Both the zonal and lateral PG synthesis are, eventually, halted. After 
washing and mechanical manipulation of the cells, cell separation occurs, producing two daughter cells with trapped signal (red).
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The consequences of producing two isoforms of FtsZ 
are not known. 

The pattern of B. burgdorferi PG synthesis, and the 
priming of division sites, bares resemblance to the 
cell cycle of the ovacoccoid bacterium Streptococcus 
pneumoniae. Three discrete zones of PG synthesis 
are apparent in S. pneumoniae prior to cell division 
(Peters et al., 2014). Each zone is equidistant and 
delineate future division sites (Peters et al., 2014; 
Tsui et al., 2014). These similarities are contrasted by 
some notable differences that truly make B. 
burgdorferi growth unique. For instance, S. 
pneumoniae PG zones are peripheral to the site of 
septal synthesis and both modes of growth occur 
simultaneously but do so in the absence of lateral 
synthesis. The latter can be attributed to S. 
pneunmonia not producing MreB, the central player 
in lateral PG elongation (Vollmer et al., 2019). 
Peripheral and septal PG zones are driven by Pbp2a 
and Pbp2x, respectively (Pinho et al., 2013). In 
contrast, B. burgdorferi zonal and lateral PG 
biogenesis occur simultaneously, but are discrete 
from septal synthesis. B. burgdorferi does not appear 
to encode a Pbp2a homologue but does produce an 
unusual Pbp analogous to FtsI with an additional 
PASTA (penicillin-binding protein and serine/
threonine kinase associated) domain –a domain 
found within Pbp2x (Beilharz et al., 2012) and 
important regulator cell division (Fleurie 2014}.  

Lipid acquisition/biosynthesis and modification 
Phospholipids are the main components of cellular 
membranes; they form permeable bilayers that act as 
a barrier and support critical biological processes, 
including sensing and signaling. Most bacteria 
possess anionic phospholipids such as PG and 
cardiolipin (CL) and the zwitterionic phosphatidyl-
ethanolamine (PE). Like most bacteria, B. burgdorferi 
has PG, but it also possesses PC (Belisle et al., 
1994), which is the most common phospholipid in 
eukaryotic membranes but is far less common 
among prokaryotes (Sohlenkamp and Geiger, 2016). 
The levels of PC in the membrane of prokaryotes 
range from small amounts in Pseudomonas 
aeruginosa to up to 73% of total membrane lipids in 
Acetobacter aceti (Sohlenkamp et al., 2003). In 
Borrelia, PC is the most abundant phospholipid 
(68%-74%), while PG constitutes 26-32% of the 
membrane phospholipids. The structures of PE and 
PC are very similar, and the only difference is the 
methylation of the nitrogen in the choline of PC. 
Nonetheless, PC is a bilayer forming phospholipid 
while PE prefers to form lipid structures such as 
inverse hexagonal phase (Popova and Hincha, 
2011). There are two biosynthesis pathways in 
bacteria that produce PC, the methylation pathway 
and the phosphatidylcholine synthase (PCs) 
pathway. The methylation pathway is a stepwise 
process that converts phosphatidylethanolamine (PE) 
to PC and involves one or more phospholipid N-

Figure 3. A. Cryo-electron tomography images of intact B. burgdorferi cells. PG thickness from mid cell to pole changes from ~6nm 
to ~40nm. B. Penicillin-Binding Protein probes identify foci within PG synthesis zones. Merged phase contrast and epifluorescence 
micrograph of B. burgdorferi co-labeled with fluorescent D-Alanine HADA (red) and PBP probe bocillin (green) suggest that the PG synthesis machinery is 
positioned in finite positions, inside zones of growth. Scale bar 10 µm, inset 4X.

A                                              B
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methyltransferases (Geiger et al., 2013). The second 
pathway present in bacteria is the PCs pathway, in 
which choline condenses directly with CDP-
diacylglycerol to form PC and CMP (Geiger et al., 
2013; Sohlenkamp and Geiger, 2016). Some bacteria 
species possess both pathways, including Legionella 
pneumophila and Agrobacterium tumefaciens 
(Wessel et al., 2006; Geiger et al., 2013), but the 
majority rely on one of these pathways. The genome 
of B. burgdorferi is one of the smallest genomes 
among bacteria and lacks homologs of N-
methyltransferase genes (Fraser et al., 1997; Geiger 
et al., 2013). In addition, PE is required to produce 
PC via the methylation pathway, but it is not found in 
the membrane of Borrelia (Belisle et al., 1994). The 
lack of PE in Borrelia, which is required in many 
prokaryotes, suggests that other lipids, possibly 
glycolipids, could compensate for it (Wang et al., 
2004b). The spirochaete possesses a phosphatidyl-
choline synthase, encoded in the gene bb0249, that 
is involved in the production of PC via the PCs 
pathway (Wang et al., 2004b). bb0249 was cloned in 
Escherichia coli, which does not contain PC, resulting 
in the production of PC in the presence of exogenous 
choline (Wang et al., 2004b). Choline is readily 
available in the host and is likely transported into the 
cell through the ATP dependent transporter system 
ProU (Bontemps-Gallo et al., 2016) 

The second phospholipid present in the membrane of 
B. burgdorferi is PG. The spirochaete encodes a 
phosphatidylglycerol synthase (PGs) gene (bb0721) 
in the chromosome that is critical for the production 
of PG from CDP-DAG. E. coli HD38/pHD102 was 
transformed with a plasmid containing bb0721 
(pTAC56) to assess the PGs activity of this gene. E. 
coli HD38 lacks a PGs, which is essential for growth, 
and therefore requires a functional copy expressed 
by the temperature-sensitive plasmid pHD102. As a 
result, at temperatures above 30°C, the growth of E. 
coli HD38/pHD102 stops. In contrast, transformed E. 
coli HD38/pTAC56 grew at 43°C, supporting the role 
of BB0721 as a PGs. This was further confirmed by 
analyzing the contribution of PG to the total 
phospholipid composition in both strains. The PG 
content in HD38/pTAC56 did not change, whereas in 
HD38/pHD102 dropped from 22% at 30°C to less 
than 5% at 43°C. (Wang et al., 2004b) 

Overall, the presence of functional PCs and PGs 
indicates that PC and PG are synthesized in a 
pathway(s) involving CDP-DAG. The spirochaete has 
a cdsA homolog (bb0119) that mediates in the 

transfer of CMP from CTP to phosphatidic acid (PA) 
to form CDP-DAG, which is used by PCs that 
condense choline directly with CDP-DAG to form PC 
and releases CMP (Wang et al., 2004b). An unusual 
trait of phospholipids in Borrelia is the low double 
bond/acyl chain ratio (∼0.25) that results in saturated 
acyl chain levels close to 75% (Hossain et al., 2001; 
Huang et al., 2016). Thus, at least 50% of PC 
molecules have two saturated acyl chains since 
some of the remaining PC molecules may have two 
unsaturated or one polyunsaturated acyl chains 
(Huang et al., 2016). Nonetheless, B. burgdorferi has 
outer and inner membranes. The phospholipid 
composition in both membranes is similar, but the 
saturated acyl chain levels of PC from the inner 
membrane is significantly lower (Toledo et al., 
2018b). It is important to note that differences in the 
saturation of acyl chains confer different biophysical 
properties to lipids and is vital for the formation of 
tightly packed ordered domains (rafts) in eukaryotic 
cells (London, 2002) and B. burgdorferi (Huang et al., 
2016). Therefore, this difference suggests that IM PC 
has a lower ability to support rafts relative to PC in 
the OM. (Toledo et al., 2018b).  

As mentioned above, B. burgdorferi has three 
glycolipids. ACGal, CGal, and MGalD. The presence 
of glycolipids, similar to MGalD in Gram-negative 
organisms, is unusual. In contrast, Gram-negative 
bacteria possess LPS, a glycolipid that is absent in 
Borrelia. On the other hand, the presence of 
glycolipids similar to MGalD is frequent in Gram-
positive bacteria, where major glycolipids are usually 
di-hexose DAG. The monogalacto-syldiacylglycerol 
synthase from B. burgdorferi (bbMGS) was identified 
by homology using the amino acid sequence of the 
monoglucosyl diacyglycerol synthase from the 
Acholeplasma laidlawii (alMGS) (Berg et al., 2001; 
Östberg et al., 2007). The activity of bbMGS was 
addressed by expressing the recombinant protein in 
E. coli and supplementing the cell extract with 
potential acceptor and donor substrates. The addition 
of radiolabeled Gal generated MGalD, whereas the 
addition of radiolabeled glucose did not render any 
product, which supports that the glycosylation is 
galactose-specific (Östberg et al., 2007). 

Interestingly, the activity of bbMGS was influenced by 
the phospholipid composition in the mixture. The 
activity of bbMGS increased 10-fold in the presence 
of PG compared to PC (Östberg et al., 2007). In 
Gram-positives, glycosyltransferases generally yield 
di-hexose and sometimes tri-hexose DAG products. 
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Nonetheless, bbMGS only produce a mono-hexose 
DAG, MGalD, which is the only hexose DAG present 
in the membrane of Lyme disease and relapsing 
fever Borrelia (Livermore et al., 1978; Hossain et al., 
2001). Two other glycolipids in B. burgdorferi, CGal 
and ACGal, require a glycosyltransferase. However, 
bbMGS is not involved in the glycosylation of these 
lipids since no product was detected when 
dyacylglycerol was substituted with cholesterol. 
Nevertheless, the addition of UDP-Gal/UDP-Glu to 
Borrelia cell extracts confirmed the synthesis of a 
cholesteryl galactoside (Östberg et al., 2007). There 
are three other glycosyltransferases in B. burgdorferi 
(Fraser et al., 1997), and the most suitable candidate 
involved in the glycosylation of cholesterol is bb0572, 
a putative inverted (α→β) galactosyltransferase since 
both cholesterol glycolipids have β-glycosidic 
linkages between the galactose residue and 
cholesterol (Ben-Menachem et al., 2003; Schroder et 
al., 2003). 

Cholesterol is present in the membranes of B. 
burgdorferi as cholesterol, cholesterol esters, and 
also, it is an essential component of cholesterol 
glycolipids (Ben-Menachem et al., 2003; Schroder et 
al., 2003). The spirochaete is auxotrophic for 
cholesterol and relies on the host to acquire the 
sterol. In vitro experiments demonstrated that B. 
burgdorferi takes up cholesterol directly from HeLa 
cells to make cholesterol glycolipids (Crowley et al., 
2013). During the transfer, the spirochaete 
exchanges lipids and antigens with HeLa cells, 
including cholesterol glycolipids. In addition, B. 
burgdorferi can also produce outer membrane 
vesicles that mediate in the antigen transfer to HeLa 
cells (Crowley et al., 2013). The implications of this 
mechanism in the pathogenesis of Lyme disease has 
not been elucidated yet, but the transfer of antigens 
from the spirochaete to vertebrate cells could 
contribute to an exacerbated and long-lasting 
immune response. 

Protein export and secretion 
The biogenesis of the Borrelia cell envelope is still 
very much a mystery. Inference based on known 
mechanisms and pathways in other diderm bacteria 
provides some intriguing clues, but few of these clues 
have been experimentally tested. The working model 
of Borrelia burgdorferi envelope biogenesis that we 
develop below (see also Figure 2) is, therefore, 
largely speculative in nature. It should serve as a 
working model to delineate how these two important 
components of the borrelial envelope are synthesized 

and transported to the sites where they are 
biologically active. 

Lipoprotein transport 
As already stated above and also evidenced by other 
chapters in this book, lipoproteins represent a class 
of membrane-anchored proteins that are crucial for 
the natural maintenance, transmission and virulence 
of the spirochaetes. In contrast to integral membrane 
proteins, lipoproteins are only peripherally tethered to 
the lipid bilayer leaflets of the inner (IM) or outer 
membranes (OM) via their acylated amino terminal 
cysteine residues. This not only mirrors their variable 
functions as flexible components of the periplasmic 
space or the host-pathogen interface, but also has 
implications for their thermodynamically different 
translocation through both membranes and the 
aqueous periplasmic space in between. Detailed 
studies on lipoprotein transport in Gram-negative 
bacteria have revealed a general three-step process: 
(i) Sec-dependent transport of prolipoproteins 
through the IM, (ii) lipid modification on the 
periplasmic face of the IM and cleavage of the signal 
peptide by signal peptidase II, and (iii) retention or 
release of acylated proteins and transport to the inner 
or outer leaflet of the OM. The latter sorting step is 
currently known to be mediated by either the Lol 
pathway (Tokuda and Matsuyama, 2004), a type II 
(T2SS) (Pugsley, 1993) or a type V/autotransporter 
(T5SS/AT) secretion system (Coutte et al., 2003; van 
Ulsen et al., 2003). 

The enzymes responsible for lipoprotein maturation 
were first discovered in E. coli (Sankaran et al., 
1995). The modification of lipoproteins occurs in 
three steps. First, the signal sequence LXYC 
specifies the addition of diacyl glycerol in a thioether 
linkage to the sulfur of the cysteine side chain. Then 
signal peptidase II cleaves at the amino side of the 
cysteine residue and a third fatty acid is added in an 
amide linkage to the new amino terminus (Hayashi 
and Wu, 1990). Homologues for these three 
enzymes have been identified in the B. burgdorferi 
genome (Fraser et al., 1997), suggesting that 
spirochetal lipoproteins are processed in an identical 
way. 

Lipoproteins entering the Escherichia coli Lol 
pathway (Tokuda and Matsuyama, 2004) first interact 
with an IM ABC transporter-like complex, LolCDE, 
which releases OM-targeted lipoproteins from the IM 
in an ATP-dependent manner (Yakushi et al., 2000). 
Released lipoproteins then form a water-soluble 
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complex with the periplasmic chaperone LolA (Yokota 
et al., 1999). After crossing the periplasm, this 
complex interacts with the OM receptor LolB, which 
mediates anchoring of lipoproteins to the inner leaflet 
of the OM (Yokota et al., 1999). The initial ‘+2 
lipoprotein sorting rule’ established in E. coli 
indicated that Asp at the penultimate (+2) N-terminal 
position of the mature lipoprotein leads to IM 
retention (Yamaguchi et al., 1988), while Ser or other 
amino acids at the +2 position allow the lipoproteins 
to be released to the OM. One potential mechanistic 
explanation is that the interaction of the negatively 
charged aspartate with the zwitterionic phosphatidyl-
ethanolamine blocks an interaction with the LolCDE 
sortase (Masuda et al., 2002; Harada et al., 2003). 
Yet, its general applicability remains to be determined 
as it has become increasingly clear that the ‘+2 rule’ 
is far from universal. In E. coli, amino acids at 
position +3 can also affect localization (Seydel et al., 
1999; Terada et al., 2001; Masuda et al., 2002; 
Lewenza et al., 2006). Furthermore, lipoprotein 
sorting in other Gram-negative pathogens such as 
Pseudomonas aeruginosa (Lewenza et al., 2008) 
and Yersinia pestis (Silva-Herzog et al., 2008) 
appears to rely on N-terminal signals at positions 
+3/+4 and beyond. 

While the Lol machinery operates within the 
periplasm, established pathways of lipoprotein 
translocation through the OM involve either a T2SS 
or T5SS/AT mechanism. The prototypical T2SS, the 
Klebsiella oxytoca Pul secretion (Pugsley, 1993), 
secretes the surface-anchored enzyme PulA. Its 
secretion signal is located within at least three non-
adjacent regions of the structural protein (Sauvonnet 
and Pugsley, 1996; Francetic and Pugsley, 2005). In 
the absence of a type II secretion system, PulA’s 
penultimate Asp residue functions as IM retention/Lol 
avoidance signal (Pugsley et al., 1990). Lipoproteins 
exported via a T5SS/AT are translocated through the 
OM via a C-terminal autotransporter domain and 
include the Bordetella pertussis subtilisin SphB1 
(Coutte et al., 2003) and the Neisseria meningitidis 
serine protease NalP (van Ulsen et al., 2003). 

A database homology search for analogous 
spirochetal lipoprotein export pathways showed that 
orthologs of all essential components of the Sec 
translocase complex and the three enzymes required 
for lipoprotein modification are present in Borrelia 
(Figure 1), Leptospira and Treponema (Fraser et al., 
1997; Fraser et al., 1998; Haake, 2000; Nascimento 
et al., 2004; Seshadri et al., 2004). Yet, further Sec-

dependent or -independent bacterial protein 
secretion pathways are missing in spirochaetes, with 
the exception of the described Type I Bes secretion 
system in Borrelia burgdorferi (Bunikis et al., 2008) or 
potential twin-arginine translocation (Tat) and type II 
secretion orthologs in Leptospira (Nascimento et al., 
2004). Lol pathway orthologs were identified as well. 

In diderm bacteria, the Lol pathway is responsible for 
ensuring proper sorting of lipoproteins within the 
periplasm. LolCDE forms an IM ABC transporter-like 
complex that uses the energy from ATP hydrolysis by 
LolD to release fully modified lipoproteins from the IM 
via LolCE to the periplasmic carrier protein LolA 
(Matsuyama et al., 1995; Matsuyama et al., 1997; 
Tajima et al., 1998; Yakushi et al., 1998; Yakushi et 
al., 2000; Miyamoto et al., 2001; Tanaka et al., 2001; 
Fukuda et al., 2002; Masuda et al., 2002; Hara et al., 
2003; Takeda et al., 2003; Taniguchi et al., 2005; Ito 
et al., 2007; Oguchi et al., 2008; Okuda et al., 2008; 
Watanabe et al., 2008; Okuda and Tokuda, 2009; 
Tsukahara et al., 2009; Yasuda et al., 2009; Remans 
et al., 2010; Tao et al., 2010; Narita and Tokuda, 
2011; Okuda and Tokuda, 2011; Mizutani et al., 2013; 
Hayashi et al., 2014; Zückert, 2014; Grabowicz and 
Silhavy, 2017). Orthologs of LolCDE (Yakushi et al., 
2000), LolA (Yokota et al., 1999), but not the OM 
lipoprotein receptor LolB (Yokota et al., 1999), were 
detected in the B. burgdorferi genome. The absence 
of LolB is not surprising, as LolB, an OM periplasmic 
lipoprotein and structural homolog of LolA (Takeda et 
al., 2003) is found only in β- and γ-proteobacteria 
(Wilson et al., 2015). 

Conditional B. burgdorferi type strain B31 mutants in 
the LolD and the periplasmic lipoprotein carrier LolA 
were shown to have a significant growth defect, 
indicating that the pathway is essential (Bridges, 
Dowdell, Chen, Kueker, Liu, Blevins & Zückert, 
unpublished results). A working model of the Borrelia 
lipoprotein transport pathway therefore includes 
LolCDE (BB0078-81) and LolA (BB0346) orthologs, 
but diverges from that of other diderm bacteria by 
utilizing a so far unidentified additional OM module to 
facilitate translocation, or ‘flipping’, of surface 
lipoproteins through the OM (Figure 1). This 
mechanism might be analogous to the Slam 
machinery in Neisseria meningitidis (Hooda et al., 
2016), although those proteins have restricted 
substrate specificities, and Slam homologs appear 
absent from Borrelia genomes. Genetically 
engineered B. burgdorferi express and present on 
their surface biologically active VMPs of RF Borrelia 
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(Zückert et al., 2004). This indicates that lipoprotein 
export machineries in different species of the genus 
Borrelia are functionally conserved. 

Several independent lines of evidence point toward a 
periplasmic mechanism that maintains the large and 
diverse set of B. burgdorferi surface lipoproteins 
(Dowdell et al., 2017) in a translocation-competent 
conformation by preventing them from folding 
prematurely in the periplasm. (Schulze et al., 2010; 
Chen et al., 2011; Chen and Zückert, 2011; Kumru et 
al., 2011b). Site-directed mutagenesis studies of 
model surface lipoproteins OspA, OspC and Vsp1, 
including fusions to a faithful localization reporter 
variant of monomeric red fluorescent protein mRFP1 
or conditionally folding calmodulin, also have 
repeatedly implied that the N-terminal tether peptides 
of the lipoproteins are intimately involved in this 
process - tether deletion and substitution mutants 
were specifically deficient in OM translocation 
(Schulze and Zückert, 2006; Kumru et al., 2010; 
Schulze et al., 2010), and surface localization of 
lipoprotein-calmodulin fusions required either the 
presence of a wild-type tether or calcium chelation-
induced unfolding of calmodulin (Chen and Zückert, 
2011). One potential mechanism would be that 
surface-targeted pro-lipoprotein peptides interact with 
a periplasmic “holding” chaperone (Figure 1) as they 
emerge tether-first from the IM Sec complex on the 
periplasmic side of the IM. This would be analogous 
to the “high affinity, low specificity” interaction of the 
proteobacterial chaperone SecB with the diverse 
peptides released from the ribosome (Park et al., 
1988; Liu et al., 1989; Randall and Hardy, 2002; Lilly 
et al., 2009). The holding chaperone would then 
deliver surface lipoproteins in an at least partially 
unfolded conformation to an OM lipoprotein 
“flippase”, which facilitates translocation through the 
OM and leads to the demonstrated ultimate 
anchoring of surface lipoproteins in the surface leaflet 
of the OM (Schulze et al., 2010; Chen et al., 2011; 
Chen and Zückert, 2011) (Figure 1).  

The B. burgdorferi version of the Lol pathway may 
function either like a purely periplasmic lipoprotein 
sorting pathway as in other diderm bacteria, albeit 
with a LolA that can operate in absence of a cognate 
LolB. This would require an additional branch within a 
dichotomous lipoprotein secretion machinery where 
surface lipoproteins bypass the Lol machinery 
altogether to reach the surface. Alternatively, B. 
burgorferi LolA could have evolved to become fully 
integrated into the surface lipoprotein secretion 

pathway, potentially taking on the added role of a 
“holding” chaperone (Figure 1) 

Integral membrane protein transport 
While other bacteria commonly ensure correct 
localization of their membrane proteins by including 
transmembrane-spanning domains, Borrel ia 
seemingly prefer N-terminal lipidation as a 
membrane anchoring method. Proteins containing 
transmembrane-spanning domains appear to be rare 
compared to Gram-negative bacteria. Biosynthetic 
labeling of Borrelia cultures with [14C] amino acids 
identified only a few amphiphilic polypeptides that did 
not co-migrate with lipoproteins (Brandt et al., 1990) 
and freeze-fracture electron microscopy visualized 
only few outer membrane pore structures (Walker et 
al., 1991; Radolf et al., 1994).  

Integral transmembrane proteins (TMPs) are 
important components of both the cytoplasmic inner 
(IM) and outer membrane (OM) lipid bilayers and 
required for their selective permeability. Studies on 
the mechanisms of processing, folding and 
membrane insertion in model systems have identified 
several IM, periplasmic and OM components 
involved in the assembly of TMPs in both the IM and 
OM. Figure 1 shows potential functional B. 
burgdorferi orthologs identified in sequence 
homology searches. The long-standing textbook 
dogma on membrane protein structures stated that α-
helical transmembrane (TM) domains span the IM 
and β-barrels span the OM. Yet, recent data suggest 
that this might be an oversimplification. The Wza 
translocon for E. coli polysaccharides forms an α-
helical barrel in the OM (Dong et al., 2006). P13, a 
multimeric B. burgdorferi OM porin, is predicted to 
have largely α-helical secondary structure and might 
form similar tertiary structure in the OM (Noppa et al., 
2001; Nilsson et al., 2002). 

TMPs, like LPs, are also predominantly targeted to 
the Sec translocon, but their signal peptides are 
cleaved by a separate periplasmic enzyme, signal 
peptidase I. Intriguingly, the B. burgdorferi genome 
encodes for three potential signal I pepdidases that – 
like sets of multiple LepBs in some gram-positive 
bacteria (Bonnemain et al., 2004) – may have 
different substrate specificities. B. burgdorferi LepB2 
(BB0031), is closest to a canonical signal I peptidase, 
with an N-terminal two-TM anchor domain and an 
appropriately localized periplasmic active site. LepB3 
(BB0263) similarly is predicted to have all 
enzymatically relevant residues located in the 
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periplasm, anchored by a single N-terminal TM 
domain. LepB1 (BB0030) immediately upstream of 
LepB2, however, appears to be a signal peptidase I-
like protein with a four-TM domain topology that lacks 
the canonical active site residues. A conditional 
knockout of lepB1 led to a marked growth defect with 
signs of significant envelope instability (You, 
Whetstine and Zückert, unpublished results), but the 
protein’s precise function remains unknown. 

Subsequent to being threaded through, the TM 
domains of IM-localizing TMPs exit the Sec channel 
through a lateral gate into the hydrophobic 
environment of the lipid bilayer. This process is 
catalyzed by YidC, an IM insertase (Xie and Dalbey, 
2008). Interestingly, YidC can also mediate a Sec-
independent insertion of IM TMPs, particularly those 
with only one to two TM domains (Samuelson et al., 
2000). The Bdr proteins, a family of bitopic type II 
membrane proteins with cytoplasmic N-termini and 
single C-terminal TM domains (Zückert et al., 1999), 
might, therefore, insert into the IM in a YidC/BB0442-
dependent, but Sec-independent manner. 

TMPs destined to the OM somehow avoid IM 
insertion and enter the periplasmic space where they 
interact with two chaperones, Skp and SurA. A 
double skp surA mutation is synthetically lethal in E. 
coli (Rizzitello et al., 2001). Yet, it remains unresolved 
whether Skp and SurA act in two parallel, redundant 
pathways, or rather sequentially. In the parallel 
scenario, SurA is the primary chaperone involved in 
periplasmic transit of OM TMPs, Skp attempts to 
rescue proteins that fall off the SurA pathway, and 
DegP degrades proteins abandoned by Skp (Sklar et 
al., 2007). In the sequential scenario, Skp prevents 
aggregation of nonnative TMPs, and SurA then 
promotes structural folding (Bos et al., 2007). A Skp 
homolog (BB0796) is expressed downstream from 
BamA, but its function remains to be determined 
(Iqbal et al., 2016). The B. burgdorferi HtrA/DegP 
chaperone/protease homolog (BB0104) appears to 
be a multifunctional protein with activity in the 
Borrelia periplasm, at the OM and as a secreted 
protein (Gherardini, 2013). Together with CtpA, HtrA 
is involved in the proteolytic maturation of BB0323, a 
periplasmic OM lipoprotein that is required for 
envelope stability and contains a C-terminal 
peptidoglycan-binding LysM domain (Stewart et al., 
2004; Kariu et al., 2013). Additional HtrA substrates 
are Borrelia chemotaxis and motility factors 
(Coleman et al., 2013). Secreted HtrA has been 

shown to degrade components of host extracellular 
matrix components (Russell et al., 2013). 

The insertion of OM TMPs is catalyzed by the Bam 
complex (Hagan et al., 2011; Konovalova et al., 
2017). The OM β-barrel TMP BamA (formerly YaeT 
or Omp85) (Voulhoux et al., 2003) displays several 
periplasmic polypeptide-transport-associated 
(POTRA) domains (Sanchez-Pulido et al., 2003). 
These N-terminal domains have been shown to 
recognize C-terminal motifs of OM TMPs and might 
initiate the structural assembly process of TMPs 
(Robert et al., 2006). They are also thought to 
provide a scaffold for the interaction with four 
associated lipoproteins, BamB (YfgL), BamC (NlpB), 
BamD (YfiO) and BamE (SmpA) (Kim et al., 2007). 
The exact roles of these periplasmic OM lipoproteins 
in OM biogenesis and their interaction with BamA 
and substrate proteins are under intense 
investigation. So far, only BamD appears to be 
essential (Onufryk et al., 2005; Malinverni et al., 
2006), indicating that BamAD forms the core Bam 
machinery in E. coli. 

The B. burgdorferi BamA homolog (BB0795) is 
associated with only two structural Bam lipoprotein 
homologs, BamB (BB0324) and BamD (BB0028). 
Depletion of BamA led to a noticeable decrease of 
OMPs and OM lipoproteins (Lenhart and Akins, 
2010). Of note, that study did not assess surface 
exposure, but the data are consistent with a likely 
indirect Bam complex dependency of the surface 
lipoprotein flipping process (Figure 1). BamB and 
BamD are the only two of the 8 lipoproteins anchored 
in the periplasmic leaflet of the OM (Dowdell et al.) 
that could not be disrupted by transposon 
mutagenesis (Lenhart et al., 2012; Lin et al., 2012; 
Lin et al., 2014); as mentioned above, a deletion 
mutant of BB0323 remains viable, albeit with a 
severe envelope structure defect (Stewart et al., 
2004). B. burgdorferi mutants lacking BamB and 
BamD exhibited altered membrane permeability and 
enhanced sensitivity to various antimicrobials. BamB 
mutants also exhibited significantly impaired in 
vitro growth (Dunn et al., 2015). Thus, in deviation 
from the gram-negative/diderm dogma, BamB might 
replace BamD in the core Bam complex of B. 
burgdorferi. 

Recently, the B. burgdorferi Bam machinery was 
shown to interact with a TamB (BB0794) homolog 
(Iqbal et al., 2016) that in other bacteria is part of a 
parallel OMP Translocation and Assembly Module 
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(TAM) pathway. This indicates that B. burgdorferi has 
adapted modules of separate secretion machineries 
to function in a single hybrid pathway that allows 
OMPs to efficiently traverse the periplasm 
(Stubenrauch et al., 2016). It is tempting to speculate 
that the Borrelia Bam/Tam machinery has evolved to 
also catalyze the insertion of outer membrane porins 
with predicted α-helical TM domains such as the 
outer membrane porin P13 (Sadziene et al., 1995; 
Noppa et al., 2001). If this were indeed the case, P13 
would have to somehow avoid recognition and 
sorting to the IM by the Sec/YidC complex, possibly 
through the 28 amino acid C-terminal domain that is 
ultimately removed by CtpA (BB0359) (Östberg et al. 
2004). 

Conclusions and future directions 
Since the discovery of the first outer membrane 
components, the borrelial cell envelope has given up 
many secrets, but many more await unraveling. The 
completed genome sequences of several species 
have also aided in the understanding of the common 
biology of Borrelia spirochaetes. In future studies, 
structure-function relationships of lipoprotein 
virulence factors need to be determined beyond their 
antibody epitopes. Recent advances in protein 
structure determination need to be leveraged to 
reveal the likely unusual conformations of Borrelia 
OM transmembrane proteins and to further 
understand the adaptive capacity of the bacterium in 
the various ecological niches it encounters. Envelope 
biogenesis pathways have to be further tested 
experimentally. A better understanding of the Borrelia 
cell cycle and envelope homeostasis are paramount 
to a better understanding and improved treatments 
for Lyme disease and relapsing fever. For example, 
quantitative, high-resolution reporters for PG 
synthesis can address issues related to so called 
persister organisms, and the overall status of an 
active infection. Identification and characterization of 
essential structural proteins and enzymes that can be 
targeted by of small molecule inhibitors can lead to 
novel therapeutics. We continue to discover that this 
phylogenetic ancient spirochetal microorganism has 
developed solutions of its own and often does not 
conform to the dogmatic structure and function of the 
cell envelope of Gram-negative bacteria - be it with a 
bacterial surface dominated by lipoproteins, the 
formation of lipid rafts in both membranes, an 
intriguing interplay of its unique peptidoglycan with 
the nearby motility apparatus, and the modular 
shuffling and adaptive salvaging of proven molecular 
machineries to maintain an envelope under 

conditions where change is constant. We continue to 
anticipate a bright future with many challenges and 
unsolved mysteries for several generations of 
Borrelia researchers. 
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