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Abstract  
Vaccines can be powerful tools, but for some diseases, safe and effective vaccines 
have been elusive. New developments in nucleic acid sequencing, bioinformatics, 
and protein modeling are facilitating the discovery of previously unknown antigens 
through reverse vaccinology approaches. Sequencing the complementarity-
determining region of antibodies and T cell receptors allows detailed assessment of 
the immune repertoire and identification of paratopes shared by many individuals, 
supporting the selection of antigens that may be broadly protective. Systems 
vaccinology approaches to asses the global host response to vaccination by 
evaluation of differentially expressed genes in blood, cellular or tissue transcriptomes 
can reveal previously unknown pathways and interactions related to protective 
immunity. While it is important to remember that discoveries made through reverse 
vaccinology and systems vaccinology must still be confirmed with traditional 
challenge models and clinical trials, these approaches can provide new perspectives 
that may help solve longstanding problems in veterinary vaccinology.  
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Introduction 
At its best, vaccination has substantial beneficial impact. The history of vaccination 
includes notable successes, such as the eradication of smallpox in humans and 
rinderpest in cattle (Greenwood, 2014). In ongoing campaigns, vaccines are used to 
prevent deaths due to pathogens such as rabies virus (Fisher and Schnell, 2018), 
and morbidity associated with agents such as foot-and-mouth disease virus (Diaz-
San Segundo et al., 2017). It is indisputable that vaccines can be powerful tools in 
the promotion of animal and human health. However, it has been difficult to develop 
reliable vaccines for some diseases, and vaccination has even rarely enhanced 
disease (Kapikian et al., 1969). Clearly, information required to guide development of 
safe and effective vaccines is sometimes lacking.  

In situations where knowledge gaps impede vaccine development, approaches 
leveraging new technologies that allow relatively rapid and inexpensive 
determination of nucleic acid sequences or protein structure may provide the missing 
insights. Here we summarize recent research using such technologies to identify 
new antigens, to characterize more holistically protective host responses to antigens 
and adjuvants, and to investigate adverse vaccine reactions. While much of the 
available information to date comes from investigations of human vaccines, the 
examples demonstrate the possibilities for answering a variety of questions relevant 
to veterinary vaccinology.  

Vaccine development: classical versus next generation 
Classical vaccinology is a hypothesis-driven approach to laboratory testing of 
pathogens that identifies antigenic components capable of eliciting protective 
immunity (Moxon et al., 2019). Classical vaccinology employs a pipeline that begins 
by isolating the pathogen, followed by some manner of attenuation that retains 
immunogenicity, stimulates memory, and prevents pathogenicity. Subsequent 
iterations of this approach have applied biochemical, serological and microbiological 
methods to purify antigenic factors from both attenuated organisms and from 
organisms grown in culture— a laborious approach that yields few immunogens over 
very protracted time frames (Rappuoli, 2000). Clearly, classical vaccinology 
approaches have been informed by insight garnered from natural infections, such as 
the use of immune sera for screening candidate antigens, and recognition that 
farmers previously infected with cowpox did not develop lesions following smallpox 
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variolization, nearly 28 years prior to Jenner’s application of this principle in the first 
vaccination (Boylston, 2013). Nonetheless, classical vaccinology relies heavily on 
injection into disease surrogates (most commonly laboratory animals) in order to 
identify the antigenicity of vaccine candidates and their ability to elicit a protective 
immune response.  

Contrasting classical vaccinology, scientific and technological advances have 
ushered in a new generation of vaccinology in which candidate vaccine antigens are 
computationally predicted from the DNA sequences of pathogen genomes (Capecchi 
et al., 2004). Moreover, the ability of peptides from these proteins to bind MHC 
molecules and become efficient T-cell epitopes; or to act as linear, conformational, or 
immunoglobulin class-specific (Saravanan and Gautham, 2018; Gupta et al., 2013) 
B-cell epitopes, is being predicted in silico (reviewed in Dhanda et al., 2017). Quite 
significantly, antigen-specific sequences of B-cell and T-cell receptors (ie paratopes) 
derived from individuals with protective immune responses are being characterized 
to identify their complementary antigenic epitopes. Paralleling these technological 
advances in vaccine antigen development are co-evolving technologies that are 
increasing knowledge and understanding of the mechanistic basis of protective 
immunity in the context of specific pathogens, as will be discussed later in this paper.  

By refining candidate vaccine antigen prediction and the discernment of immune 
effector pathways that confer protective immunity, next generation vaccinology 
improves the efficiency with which animals are used to screen vaccine candidates for 
immunogenicity and protective immune responses. Significantly, the in silico 
predictive approaches, such as those used for candidate vaccine antigen prediction, 
reflect algorithms that are constantly evolving. Subsequent algorithms predict 
antigens that are both conserved, and novel relative to prior algorithms, while also 
failing to identify previously predicted antigens (Dalsass et al., 2019). These 
discrepancies, which are inherent in the approach, highlight 1) a need for 
redundancy in the computational predictions employed to identify candidate vaccine 
antigens, and 2) the importance of comprehensive validation of the ability of 
predicted antigens to elicit protective immune responses in pre-clinical models and 
ultimately in the host species for the pathogen. 
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Reverse Vaccinology 
Classical vaccinology successes are readily demonstrated for pathogens that lack 
antigenic variability or for which immunologic memory prevents reinfection (Rappuoli, 
2007). However, most pathogens do not possess these characteristics. Classical 
vaccinology has proven inadequate for the development of vaccines against 
pathogens demonstrating antigenic diversity, pathogens that cannot be grown in vitro 
or lack adequate animal models of infection, and pathogens for which cell-mediated 
immune responses are protective (Rappuoli, 2000). Certain vaccines have also 
demonstrated safety issues tracing to the potential for recombination and 
immunologic events that result in enhanced disease (Agnew-Crumpton et al., 2016, 
Kapikian et al., 1969).  

Contrasting the need for pathogen isolation with classical vaccinology, the advent of 
massively parallel DNA sequencing, also termed next generation sequencing (NGS), 
enabled rapid, cost-effective determination of a pathogen’s genome sequence. Using 
a methodological approach coined reverse vaccinology by Rappuoli (2000), the full 
repertoire of protein coding sequences (the pathogen’s proteome) is identified from 
the genome sequence of the pathogen. For bacteria and more complex pathogens, 
this step yields thousands of proteins, the majority of which are not relevant as 
vaccine antigens. To narrow the predicted proteins to those most relevant as 
candidate vaccine antigens, an expanding number of computational algorithms have 
been developed that model the encoded proteins from their DNA sequences, in order 
to predict characteristics of the proteins such as their 3-dimensional structure and 
predicted expression sites in the pathogen. Using this approach, for instance, 
proteins predicted to be secreted or exposed on the surface of the pathogen in 
particular conformations, and therefore subject to immune surveillance, can be 
identified and prioritized for analysis as vaccine candidates. Following this in silico 
prediction, DNA sequences of these candidate vaccine antigens are compared to 
genomic sequences of the host and homologous sequences with the potential to 
serve as autoantigens are eliminated.  

Reverse vaccinology was first applied to Group B Neisseria meningitidis, an 
important cause of bacterial meningitis in humans. Whereas vaccines for other 
groups of Neisseria meningitidis employ the bacteria’s capsular polysaccharide as 
an antigen, this approach is complicated by conserved polysialic acid residues in the 
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bacteria’s capsular polysaccharide that are shared with human tissues (Serruto et 
al., 2012). Employing the genome sequence of Group B Neisseria meningitidis 
(strain MC58), more than 2000 predicted proteins were analyzed in silico to identify 
proteins predicted to be surface exposed or excreted (Pizza et al., 2000). Of the 570 
predicted proteins, 350 were successfully expressed, purified, and used to immunize 
mice. Immune sera were screened by Western blot analysis against bacterial 
extracts to verify protein expression, while surface expression of the protein was 
confirmed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry using 
intact, whole bacteria. Finally, complement-mediated killing activity of the antibodies 
(using human complement) was evaluated because it is an accepted correlate for in 
vivo protection in clinical trials of human meningococcal vaccines (Borrow et al., 
2006). Of the 91 proteins found to be positive in at least one of the first three assays, 
28 induced antibodies with bactericidal activity (Serruto et al., 2012). Five proteins 
were included in the final vaccine based on their ability to induce protection against 
diverse N. meningitidis strains. This protection was assessed by determining if 
specific antibodies to each protein antigen conferred passive protection in infant 
rodent models, or by identifying serum bactericidal antibodies following vaccination 
(Giuliani et al., 2006). The final vaccine (4CMenB, Bexsero®) was released in 
Europe in 2013 (and the United States in 2015), 13 years following publication of the 
pathogen’s genome sequence and initiation of the vaccine effort (Tettelin et al., 
2000).  

While reverse vaccinology presents distinct advantages resulting from identification 
of the complete protein repertoire of a pathogen, dependence on protein coding 
sequences prevents identification of non-protein antigens such as polysaccharides, 
which have been important components of many successful vaccines, and CD1-
restricted glycolipids which are promising vaccine candidates (Rappuoli, 2000). Also 
noteworthy is the finding that certain proteins can be restrictive in terms of their 
pathogen recognition and poorly antigenic (Sundling et al., 2013), challenges that 
are circumvented by the use of adjuvants and construction of multi-epitope vaccines 
(Burton, 2017).  

In Silico Prediction of B-cell Receptor/Antibody Epitopes  
The large number of candidate protein antigens identified by reverse vaccinology 
presents a significant bottleneck in the screening of these antigens to determine their 
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immunogenicity. Purified, full-length recombinant proteins used to elicit antibodies 
are often difficult to prepare in quantities sufficient for immunization. This is 
exemplified by the aforementioned screening of 570 predicted candidate vaccine 
proteins, 350 of which could be expressed in developing the Group B N. meningitidis 
vaccine, 4CMenB. To decrease the numbers of proteins subjected to in vivo 
screening, downstream technologies have been developed to increase the likelihood 
that predicted proteins from the genome sequence of a pathogen will be 
immunogenic. These analyses to predict immunogenic epitopes reflect the field of 
immunoinformatics that utilizes bioinformatics approaches to understand and 
interpreting immunological data.  

B-cells are well recognized as the source of antibodies that provide protection from 
pathogens and cancerous cells. Antibodies recognize their target antigen by binding 
to portions of the antigen that are termed antigenic determinants or epitopes. 
Antigens generally possess many sites that function as epitopes. Regions of the 
antibody to which epitopes bind are termed paratopes, which are composed of six 
complementarity-determining regions (CDR) that confer antigen-specificity in epitope 
to paratope binding. Immunologic dogma holds that an antibody binds to a single 
epitope on an antigen, but expanding evidence indicates that some antibodies bind 
to more than one epitope (Van Regenmortel, 2014). A B-cell (and its clones) 
secretes, and also expresses on its surface, antibodies to the same epitope. Thus, 
antibodies expressed on the B-cell surface function as receptors (B-cell receptors) 
for the same epitope as the secreted antibodies. B-cell receptor stimulation by B-cell 
epitopes contributes to both the development of immunologic memory and antibody 
secretion. Accordingly, B-cell epitope prediction is an important goal to improve the 
likelihood that candidate vaccine proteins in reverse vaccinology are immunogenic.  

B-cell epitopes can be linear (continuous) or conformational (discontinuous) (Stave 
and Lindpainter, 2013). Linear B-cell epitopes are formed by sequential amino acids 
in the protein. Conformational B-cell epitopes are formed by amino acids that are not 
sequential in the protein, but instead come into close contact to form an epitope as a 
result of the three-dimensional shape of the folded protein. Tools for in silico B-cell 
epitope have been reviewed elsewhere (Dhanda et al., 2017). A primary challenge 
for in silico B-cell epitope prediction is that the majority of B-cell epitopes have been 
shown to be conformational (Greenbaum et al., 2007; Kringelum et al., 2013; 
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Ferdous et al., 2019;). Illustrating the complexity of this challenge, Stave and 
Lindpaintner (2013) evaluated crystal structures from 111 antigen-antibody structures 
derived from proteins 22-442 amino acids long. They identified discontinuous 
epitopes that were formed from peptides ranging in length from 20 to 442 amino 
acids (average 50-79 amino acids) in which 20-101 (median=37) residues were in 
contact between the epitope and paratope, in clusters of 2-12 amino acids. Indeed, 
in silico B-cell epitope prediction tools that are based upon protein sequence 
attributes including calculations of hydrophilicity, flexibility, beta-turns, surface 
accessibility, amino acid composition and amino acid cooperativeness have been 
poorly predictive (Kringelum et al., 2012; Jespersen et al., 2017). Given that the 
theoretical B-cell receptor repertoire is nearly unlimited (1074 possible sequences, 
Saada et al., 2007), the likelihood that any surface accessible region of a protein will 
have a complementary antibody conformation is rather high. Accordingly, the poor 
predictive value of in silico B-cell epitope predictions is likely an inherent 
characteristic of tools that are designed to comprehensively identify epitopes that are 
‘potentially’ antigenic (Jespersen et al., 2019). Supporting this assertion, 
conformational B-cell epitope predictions employing various artificial intelligence 
platforms that are trained in a more supervised manner, using crystal epitope 
structures that correspond to well characterized antibody paratopes, provide 
improved epitope predictions (Dhanda et al., 2017; Jespersen et al., 2017). However, 
these tools employ resolved crystal structures of target antigens that are not 
generally available. Addressing and perhaps solving this conundrum, Rahman et al. 
(2016) demonstrated, using a B-cell epitope prediction tool that characterizes 
sequence-based protein disorder tendency (IUpred-L), that epitope prediction based 
on short ≤11-aa peptides falsely classifies B-cell epitopes as non-epitopes (53% 
accuracy). This is because short peptides of B-cell epitopes bind poorly. By modeling 
peptides of moderate length (16-30 amino acids) epitope prediction achieved 86% 
accuracy, indicating that training sets composed of appropriately sized longer 
peptides are necessary for accurate in silico B-cell epitope prediction.  

In Silico Prediction of T-cell Receptor Epitopes 
Cell-mediated immunity is mediated by T-cells that have cytotoxic activity, ie 
cytotoxic T-cells, or by helper T-cells that provide co-stimulatory signals for B-cells 
and cytotoxic T-cells. Both helper T-cells and cytotoxic T-cells recognize epitopes in 
a highly specific manner, due to the antigen-specificity of paratopes in their T cell 
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receptors (TCRs). However, unlike B-cell receptors, TCRs recognize epitopes that 
are bound to Major Histocompatibility (MHC) receptors— specifically MHC I for 
cytotoxic T-cells, and MHC II for helper T-cells. MHC I receptors are expressed on 
the surface of all nucleated cells whereas MHC II receptors are found on antigen 
presenting cells. MHC genomic loci are among the most variable genes in mammals, 
enabling great diversity in MHC molecules. In humans, where MHC expression has 
been well characterized, there are at least 10,000 MHC I alleles (Robinson et al., 
2017) and 3,000 MHC II alleles (Rock et al., 2016). Individuals express 3-6 different 
MHC I alleles (3 from each parent) and 3-12 different MHC II receptor alleles (Rock 
et al., 2016). Each MHC allele is estimated to be able to bind 20 million (MHC I) to 
200 billion (MHC II) epitopes (Rock et al., 2016). Interaction between the T-cell 
receptor paratope and peptide bound to an MHC receptor confers antigen-specific 
recognition. A primary challenge for in silico TCR epitope prediction is evident in the 
possible combinations that are generated when MHC diversity is considered with the 
potential diversity in the antigen recognition regions of TCRs (ie TCR paratopes).  

Approaches to in silico T-cell epitope prediction can be direct or indirect. Direct 
prediction targets identification of epitopes that bind to TCRs, while indirect 
prediction targets identification of epitopes that bind to MHC receptors. Indirect T-cell 
receptor epitope prediction is based on peptide binding to a groove within both MHC 
I and MHC II molecules in which peptides are maintained predominantly in an 
extended conformation (Madden, 1995). Early direct prediction algorithms were 
based upon structural analyses of helper T-cell epitopes that indicated these 
epitopes were amphipathic with helical turns (DeLisi and Berzofsky, 1985; Margalit et 
al., 1987; Stille et al., 1987). Subsequently, these finding were extended to cytotoxic 
T-cell epitopes (Reyes et al., 1988). However, additional investigations of the MHC II 
peptide binding groove demonstrated that it cannot accommodate helices, but 
instead binds to linear peptides (Stern et al., 1994).  

MHC I molecules load peptides generated by proteasomal proteolysis, binding to the 
peptides in the endoplasmic reticulum (ER), after the peptides are translocated from 
the cytosol (Blum, et al., 2013). The peptide-binding groove of MHC I molecules is 
closed at both ends and accommodates peptides that are typically 8 to 11 amino 
acids long (Rammensee et al., 1995). N- and C-terminal ends of the peptide form 
hydrogen bonds with amino acids that are conserved across MHC I molecules, and 
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the peptide-binding groove contains deep binding pockets with tight physicochemical 
preferences (Madden, 1995). Collectively, these features enable binding predictions. 
MHC II bound epitopes classically result from cleavage of pathogen proteins to 
peptides in the endolysosome of antigen presenting cells, followed by association of 
peptide epitopes with MHC II molecules exiting the Golgi. Peptides bind to an MHC II 
binding groove through a series of hydrogen bonds in sites that are highly conserved 
within the MHC II molecule, despite differences in peptide epitope sequences and 
MHC proteins (Stern et al., 1994). This confers a stereotyped but complex mode of 
binding across the spectrum of peptide-MHC II interactions that informs in silico 
prediction algorithms for MHC II binding epitopes. An important distinction between 
MHC I and MHC II molecules is that the binding groove for MHC class II is open at 
both ends (Painter and Stern, 2012). The option for bound peptide to protrude from 
the MHC molecule makes in silico MHC II binding prediction more difficult 
(Lundegaard et al., 2010). As a consequence of the extension beyond the groove, 
peptides that bind MHC class II molecules tend to be of variable length but are 
typically 12 to 25 amino acids long (Jardetzky et al., 1996).  

Computational tools that predict peptide binding to MCH molecules are predicated 
on the availability of high-quality DNA sequence data for MHC alleles that are highly 
prevalent in the population that will be vaccinated. In humans >22,000 human MHC 
allele sequences have been deposited into the Immuo Polymorphism MHC 
Database (www.ebi.ac.uk/ipd/mhc/). In contrast, there are significantly fewer 
classical MHC alleles in this database for the horse, sheep, dog, pig and cow: 
currently 60, 247, 384, 450 and 678, respectively. MHC allele expression is vastly 
different across human ethnic groups (Terasaki, 2007), limiting world-wide 
application of T-cell epitope-based vaccination. This is relevant for veterinary 
medicine where the diversity and prevalence of MHC alleles within each species 
tends to be poorly characterized. Vaccines derived from MHC-peptide binding 
predictions are efficacious in individuals that express the MHC allele used for the 
epitope prediction. In pigs and cattle, where MHC allele expression is more likely to 
be defined within large portions of the population, these prediction methods are 
being applied. In this regard, MHC alleles have been identified in humans and cattle 
that share a high degree of epitope specificity (Lund et al., 2004; Pandya et al., 
2015). These MCH supertypes enable T-cell epitope vaccines to address large 
populations with diverse MHC expression based upon expression of at least one 
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allele in the supertype. Accordingly, prioritizing the identification of MHC supertypes 
in species with highly polymorphic MHC molecules has particular advantages for 
vaccine design.  

Structure based methods are available for predicting peptide binding to MHC 
complexes but these methods have low predictive performance (Nielsen et al., 
2018). In contrast, matrix-based predictions and machine learning technologies that 
employ protein sequences as input and are trained on known MHC-peptide 
interactions have improved predictive performance (Mei et al., 2019; Nielsen et al., 
2018). Few of these tools have been validated on veterinary species. However, 
NetMHCpan employs artificial neural networks that have been trained through 
multiple iterations on peptide-MHC I affinity measurements from human, mouse, 
primates, cattle, and swine, as well as ligands and their complementary MHC I 
alleles from these species (Hoof et al., 2009; Carrasco Pro et al., 2014; Jurtz et al., 
2017; Hansen et al., 2014). NetMHCpan can predict peptide-MHC class I binding for 
any allele of known sequence. Nine of 19 MHC I binding epitopes predicted by this 
tool for foot and mouth disease virus (FMDV, >1400 possible peptides) bound to pig 
MHC I (i.e. SLA) (Pedersen et al., 2013). A web interface of NetMHCpan that is 
specifically trained for identifying MHC I restricted peptides in cattle is available 
(Nielsen et al., 2018). This tool has been used to identify MHC I-peptide binding for 
FMDV (Pandya et al., 2015), bovine herpes virus, and Theileria parva, the causative 
agent of East Coast Fever (Nielsen et al., 2018; Svitek et al., 2014). An alternative 
proprietary prediction tool for MHC I and MHC II peptide binding, PigMatrix, is based 
on the pocket method of MHC I-peptide binding, and has been used to identify T-cell 
vaccine epitopes to for influenza virus (Gutiérrez et al., 2015; Hewitt et al., 2019). 
  
Additional Antigen Selection Criteria Employed in Reverse Vaccinology 
RNA-sequencing (RNAseq) is a technology that both identifies and quantifies RNA 
sequences that are expressed within a biological sample. In one embodiment of its 
utility for candidate vaccine antigen identification, RNAseq has been used to quantify 
the level to which in silico predicted vaccine candidates are expressed (as mRNA) by 
the pathogen. This can be done for instance during conditions of natural infection, or 
during surrogates of natural infection such as low pH or osmotic stress, as would be 
anticipated in the phagosome. These results are then informative in ranking the in 
silico predicted vaccine candidates based upon the relevance of their expression 
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levels. Similarly, proteomic analysis, which identifies the proteins that are expressed 
and their magnitude of expression can also be employed to quantify expression of 
putative vaccine peptide epitopes in order to assist in ranking their relevance.  

Reverse Vaccinology for Veterinary Pathogens  
Employing a pathogen’s genome sequence to predict vaccine epitopes using reverse 
vaccinology presents distinct advantages over classical approaches. This approach 
has enabled vaccine design in for problematic pathogens that cannot be cultivated. 
Such is the case for Pajaroellobacter abortibovis, the causative agent of foothills 
abortion in cattle, which can only be cultivated in SCID mice (Blanchard et al., 2010). 
Using a reverse vaccinology approach, Welly et al. (2017) first determined the 
genome sequence of the pathogen by sequencing DNA from infected SCID mice. 
Computational methods were used to subtract the well-characterized genomic 
sequences originating from the SCID mice, leaving the remaining genomic regions 
belonging to P. abortibovis. DNA regions belonging to P. abortibovis were then 
arranged into a complete de novo genome sequence from which the authors 
identified 10 putative vaccine candidates using in silico prediction. Seven of these 
predicted proteins, when expressed as fusion proteins, were recognized by serum 
from P. abortibovis infected SCID mice, indicating that the proteins could be relevant 
to protective immunity.  

In other research, a reverse vaccinology approach was recently used to identify cat 
flea (Ctenocephalides felis) surface antigens predicted to be immunogenic. When 
the antigens were incorporated into experimental vaccines given to cats, flea eggs 
collected from vaccinated cats were significantly less likely to hatch (P < 0.05), as 
compared to flea eggs collected from cats receiving adjuvant only (Contreras et al., 
2018). Tomazic et al. (2018) used reverse vaccinology to identify antigens of 
Cryptosporidium parvum that reacted with antibodies in serum collected from 
Cryptosporidium-infected calves in the first month of life, indicating that the antigens 
could be associated with protection at the time when calves are most vulnerable to 
diarrhea resulting from cryptosporidiosis. In both of these examples reverse 
vaccinology allowed rapid screening of a large number of candidate proteins to 
identify antigens which might have been overlooked in classical approaches using 
whole pathogens or their components to induce immunity with experimental 
challenge.  
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Reverse vaccinology also presents advantages when dealing with pathogens that 
exhibit antigenic diversity. For instance, the DNA from multiple strains of a given 
bacterial species, termed a pangenome, can be simultaneously analyzed to allow in 
silico prediction of shared epitopes. This approach was used to identify T cell 
epitopes in antigens shared among 30 Acinetobacter baumannii strains, with a goal 
to developing effective vaccines for this bacterial pathogen that demonstrates 
widespread resistance to antimicrobials (Hassan A et al., 2016). Also relevant is the 
case of many RNA viruses where host selection pressure drives gene mutations that 
contribute to antigenic diversity. For example, sequencing of variable regions in 
nonstructural proteins 1 and 2 (nsp1 and nsp2) and the products of open reading 
frame 3 and 5 (ORF3 and ORF5) in pigs infected with porcine reproductive and 
respiratory syndrome virus (PRRSV) revealed genetic changes related to virus 
rebound at 42 days post infection (Chen et al., 2016). Improved understanding of the 
mechanisms by which PRRSV escapes host immunity could facilitate development 
of vaccines that more effectively prevent infection.  
  
Epitope-Focused Vaccine Design 
Whereas massively parallel DNA sequencing provided a gateway to reverse 
vaccinology, it is now possible to identify the breadth of the immune repertoire by 
sequencing DNA encoding antibody and T-cell receptors (TCR) from hundreds of 
thousands of individual immune cells (single cell sequencing) (Davis and Boyd, 
2019). Further, sequencing and quantification of RNA sequences that encode 
antibody and TCRs from large populations of immune cells can be used to identify 
changes in immune repertoire expression during responses to vaccination (DeKosky 
et al., 2013; Waickman et al., 2019) or infection (Sant et al., 2018; Mitsunaga and 
Synder, 2020). Epitope-focused vaccine design (subsequently coined Reverse 
Vaccinology 2.0 (Rappuoli et al., 2016), refers to the design of vaccine epitopes that 
bind to paratopes on an antibody or on a T-cell receptor that are known to confer 
protection during infection (Correia et al., 2014; Sela-Culang et al., 2015). Prediction 
of complementarity between an antigen epitope and an antibody paratope differs 
significantly from predicting B-cell epitopes. This is because prediction of epitope/
paratope complementarity is constrained by stringent epitope/paratope interactions, 
while only surface accessibility constrains B-cell epitope prediction and accordingly 
yields a large number of protein sequences (Novotný et al., 1986).  
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Epitope focused vaccine design can be viewed in four stages, with different 
methodological approaches being available to address each stage. First, individuals 
are identified that have protective immune responses to a pathogen, such as broadly 
neutralizing antibodies, bactericidal antibodies, or antigen-specific helper T-cell or 
cytotoxic T-cell responses. Second, B-cells or T-cells with paratopes that confer the 
desired immunologic outcome are isolated and the paratope sequences are 
determined. Third, structural features of the cloned paratopes are computationally 
modeled in order to predict the structure of the corresponding antigen epitope. 
Fourth, immunological testing and validation of the predicted antigen epitope is 
undertaken. In one embodiment of this approach, antibodies providing the majority of 
virus neutralizing activity for human respiratory syncytial virus were critical to the 
identification of an antigenic but transient fusion protein conformation. By inserting 
point mutations that stabilized the fusion protein structure, the antigen has been 
advanced as a vaccine candidate that has been effective in clinical trials (Magro et 
al., 2012; Gilman et al., 2016; Crank et al., 2019). Alternatively, in silico co-modeling 
of CD4+T-cell receptor and MHC II sequences from human patients with latent 
tuberculosis, who were vaccinated with M. tuberculosis peptides, identified vaccine 
epitopes that triggered CD4+ T-cell responses (Dash et al., 2017). While this 
approach has theoretical strength for identifying key protective antigens, its primary 
drawback is the resolution of only a portion of the full repertoire of epitope-specific 
antibodies and T-cell receptors, which limits comprehensive characterization of 
antigen-specific immune effector mechanisms.  

Assessment of the host response: “systems vaccinology” 
An effective immune response is the result of the choreographed interaction of 
thousands of molecular or cellular reactions which may be separated in the host by 
the distance of a meter or more. As the number of recognized components 
participating in the immune response has grown, it has become obvious that 
historical approaches to measuring immunity, which often focused only on serum 
antibody or a few cellular reactions, missed much of the picture. While for some 
applications one or a few signature responses may provide enough information, in 
cases where the nature or mechanics of a protective response are unclear, a more 
detailed portrait may be informative. This is the premise of “systems vaccinology”: 
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development and assessment of vaccines with more of the immune response in 
view.  

Systems vaccinology can be considered a branch of systems biology, in which 
interdisciplinary approaches are used to characterize the complex networks within a 
biological system, in order to better understand and predict the behavior of the 
system (Pulendran et al., 2010). A systems biology assessment evaluates all parts of 
a system responding to some perturbation, analyzing the results together in order to 
develop a model that more accurately represents the nature of the whole. Systems 
vaccinology approaches can reveal the involvement of formerly unknown genes and 
pathways related to the response to a vaccine; thus, these methods are being 
applied to identify correlates that predict protective immunity, to reveal mechanisms 
of vaccine or adjuvant efficacy, and to uncover factors contributing to adverse 
vaccine reactions.  

In spite of the potential of systems vaccinology, the use of this approach may be 
limited by the high cost of RNAseq or other required technologies, which may 
substantially limit the number of individuals that can be evaluated, thus weakening 
study power. The complications of analyzing massive data sets is also a formidable 
hurdle. It is also important to remember that the findings of a systems vaccinology 
investigation must still be confirmed with prospective investigations requiring use of 
more classical methods. Therefore, systems vaccinology should be considered a 
complement to traditional vaccinology, and not a replacement.  

Predicting protective immunity induced by vaccination 
While some vaccines are reliably protective, many are not. Moreover, the correlates 
of protective immunity are known and can be measured for some vaccines, but they 
are not clear for others. And, at times, immune responses that are assumed to be 
important are not identified in vaccinated patients that are nevertheless protected. In 
cases such as these, a global assessment of the immune response may help to 
reveal unknown but important mechanisms. In most cases to date this global 
systems vaccinology assessment has been made by assessing gene expression in 
blood or other tissue, by measuring hundreds or thousands of transcripts, most 
commonly using microarrays or, more recently, high throughput RNAseq. In humans 
and livestock, blood or peripheral blood mononuclear cell (PBMC) transcriptomes 
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have been assessed, because blood is usually easy to collect, and also because 
lymphocytes and antigen presenting cells traffic through blood during their response 
to vaccination at various sites. Increased gene expression over baseline in whole 
blood or PBMC can sometimes be seen within 24 hours of vaccination (Vahey et al., 
2010), with expression at 24 hours sometimes significantly associated with outcomes 
weeks later (Matthijs et al., 2019). Transcriptomes in tissues collected from 
vaccinated animals subjected to necropsy at various times after vaccination or 
challenge have also been used to investigate vaccine responses (Luo et al., 2014; Li 
et al., 2020).  

An early application of systems vaccinology was used to characterize the response 
of humans vaccinated with the yellow fever vaccine YF-17D (Querec et al., 2009). 
While YF-17D has been administered for decades and is highly effective, the 
reasons for its efficacy are still not clear. To improve understanding of the 
immunologic mechanisms elicited by YF-17D vaccination, Querec et al. investigated 
post-vaccination changes in plasma cytokines, chemokines, blood antigen 
presenting cells, and expression of 20,000 genes in peripheral blood mononuclear 
cells (PBMC) by microarray over the first 21 days after vaccination in 15 individuals. 
These early events were compared to correlates of later protective immunity: SN 
titers and CD8+ (cytotoxic T cell) activation at days 15 and 60 after vaccination. 
Following vaccination, early events including increases in CXCL10 (previously 
IP-10), IL-1α, and the percent of circulating CD86+ antigen presenting cells were 
identified, but these events were not correlated with CD8+ responses at 60 days 
post vaccination. In contrast, when 839 genes that correlated to the magnitude of 
day 60 CD8+ responses were subjected to unsupervised principal component 
analysis (PCA) followed by discriminant analysis using mixed integer programming 
(DAMIP), predictive relationships between PBMC gene expression and day 60 CD8+ 
responses were identified. PCA is a statistical procedure commonly employed in the 
analysis of gene expression datasets which is sensitive to strong patterns of 
expression that are shared across samples. PCA uses an orthogonal transformation 
to convert expression data into a set of values of linearly uncorrelated variables 
called “principal components”. DAMIP is a predictive modeling framework that uses a 
supervised-learning classification approach used to predict biomedical phenomena. 
When the investigators repeated this analytic approach in a second group of 
vaccinated individuals, the results predicted day 60 CD8+ responses with 87% 
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accuracy. Similarly, the investigators were able to predict SN responses in the 
second group of vaccinates with 80% accuracy.  

In a greatly expanded effort, this group went on to evaluate the relationship between 
the PBMC transcriptome in the week after vaccination and protective immunity 
induced by each of five vaccines: two meningococcal vaccines, YF-17D, a trivalent 
inactivated influenza vaccine, or a live-attenuated influenza vaccine (Li et al., 2014). 
For each vaccine, established correlates of immunity (such as serum antibody titers) 
were measured in vaccinated human subjects, and correlations with genes that were 
differentially expressed between baseline and the week after vaccination were 
assessed. For subjects vaccinated with one of the two meninogococcal vaccines, 
1,150 genes were differentially expressed between the day of vaccination and day 7 
postvaccination. Importantly, the research showed that evaluation of the correlation 
between individual differentially expressed genes (DEG) and protective antibody 
titers led to few significant and meaningful relationships. However, when DEG were 
grouped into blood transcription modules (BTM), based on shared functions and 
previously described interactions, BTM were significantly associated with protective 
responses to all five of the vaccines evaluated. Notably, some BTM significantly 
associated with protective responses to viral vaccines were different from the BTM 
significantly associated with protective responses to bacterial vaccines. It seems 
likely that assessment of gene expression by evaluating genes together in functional 
groups or pathways, rather than individually, may provide a more accurate picture of 
the host response to vaccination. Also, evaluating the response of groups of genes 
with coordinated expression may reveal significant changes when change in 
expression of any one gene may be too small to detect (Haining 2014).  

The BTM developed by Li et al. were later used to evaluate early immunologic 
events in pigs responding to five different Mycoplasma hyopneumoniae vaccines 
(Matthijs et al., 2019). These investigators identified an early upregulation of 
modules associated with innate immunity, including monocyte and neutrophil 
function, as well as inflammation and pathogen sensing within 24 hours of 
vaccination, which correlated to adaptive immune responses to M. hyopneumoniae 
at later time points. Significantly, pigs demonstrating increased expression of genes 
in these innate immune modules more than 24 hours following vaccination had 
weaker adaptive responses than early responding pigs. Collectively these findings 
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indicate that the best adaptive immune response to M. hyopneumoniae vaccination 
was associated with increased gene expression that supports innate immunity in the 
first 24 hours after vaccination, followed immediately by decreased expression.  

Researchers have subsequently used similar methods to characterize the response 
to other veterinary vaccines, for example, in German Landrace pigs and Pietrain pigs 
vaccinated against porcine respiratory and reproductive syndrome virus (PRRSV; 
Islam et al. 2019), in carp vaccinated orally with a DNA vaccine against Vibrio 
mimicus (Li et al., 2020), and in horses vaccinated against African horsesickness 
virus (Pretorius et al., 2016). However, to date relatively few groups have used blood 
transcriptome assessment developed in one cohort to predict vaccine efficacy in 
another cohort. Accurate and rapid prediction of vaccine efficacy in populations, 
without the need to wait to assess response to disease challenge, is a major goal of 
systems vaccinology. Ideally, findings initially made in relatively small groups with 
expensive and complicated transcriptomics could be adapted to a rapid, inexpensive 
test, perhaps based on PCR or sequencing of a small number of transcripts, that 
could be applied to larger populations.  

More recently, whole blood and PBMC transcriptome data has been used to identify 
gene expression signatures that predict antibody responses in young (<35 years) 
and aged (>60 years) human cohorts following influenza vaccination in different 
regions of the United States over multiple years (HIPC-CHI Signatures Project Team 
and HIPC-I Consortium, 2017). These investigators identified high and low antibody 
responders based on changes in their serum antibody titers (hemagglutination 
inhibition or SN) following vaccination. By evaluating changes in the expression of 
more than 32,000 genes in response to vaccination, a “response score” based on 
expression levels of 9 differentially expressed genes (DEG) or 3 DEG modules 
(similar to the BTM of Li et al., 2014) was identified which differentiated high versus 
low antibody responders in young but not aged cohorts. Significantly, the response 
score accurately predicted individuals that were high or low antibody responders 
when applied to a separate young vaccination cohort. While these investigators 
successfully used blood transcriptome data from one cohort of vaccinates to predict 
protective responses in a second cohort, their work also illuminated limitations of the 
systems vaccinology approach: 1) multiple cohorts were needed to identify the DEG 
that predicted SN antibody responses because there was too much variability in any 
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one cohort to find this relationship; and 2) the validity of the findings was dependent 
on the population structure of the discovery cohort. Specifically, the DEG that 
predicted SN antibody responses were valid for individuals under 35 years of age, 
but not for individuals over 60 years of age. In fact, there was an inverse relationship 
between gene expression associated with SN responses in young individuals versus 
older individuals, indicating that gene expression signatures that were positively 
associated with SN antibody titers following vaccination in young individuals were 
negatively associated with SN antibody titers following vaccination in old individuals. 
While this is likely an important finding, the results indicate that it may not be 
possible to extrapolate gene expression profiles from one type of population to 
another. Moreover, it may be necessary to assess blood transcriptomes in large 
numbers of individuals, or in multiple smaller cohorts, to identify meaningful 
predictive signatures. Though achieving populations of this magnitude may limit 
similar applications in veterinary research, advances in technology that have 
decreased the costs of assessing a transcriptome are likely to make these 
applications increasingly accessible. 

Mechanisms of vaccine and adjuvant efficacy 
In addition to identifying genes, gene modules, or pathways of molecular interactions 
that predict vaccine efficacy, systems vaccinology approaches can reveal previously 
unknown components or mechanisms related to vaccine or adjuvant efficacy, or 
immunity more generally. When differential expression of dozens or hundreds of 
blood or PBMC transcripts is associated with a favorable response to a vaccine, 
some of these transcripts may be from genes that are poorly characterized, or 
perhaps unexpected. Further investigation of these genes in association with more 
classical methods to assess immunity and disease resistance can lead to discovery 
of relevant new mechanisms (Hagen and Pulendran, 2019). For example, the finding 
that expression of Toll-like receptor 5 (TLR5, a pathogen recognition receptor that 
binds bacterial flagellin) was associated with influenza antibody titers a month after 
vaccination (Nakaya et al., 2011) directed further research leading to the discovery 
that flagellin activates production of B-cell growth factors by macrophages. 
Moreover, treatment of mice with antimicrobials to decrease gut bacteria (a large 
source of flagellin exposure for local immune cells) led to decreased antibody 
production following vaccination with inactivated influenza vaccine, but not modified 
live vaccine (Oh et al., 2014). Collectively, these findings indicate that the normal 
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intestinal flora may act as a sort of “endogenous adjuvant” for individuals vaccinated 
with certain vaccines. Further research in this area may lead to ways to improve 
response to vaccines by modifying the normal intestinal flora, or perhaps by co-
treatment with probiotics. These findings also illustrate how investigation of an 
unexpected molecular interaction identified by a systems vaccinology approach led 
to discovery of a new concept in immune system regulation that is directly relevant to 
vaccine efficacy.  

Though adjuvants have been used for over a century to improve response to 
vaccines, the exact immune mechanisms by which adjuvants exert their effects is 
surprisingly ill-defined. Systems vaccinology approaches present an opportunity to 
identify the genes and molecular pathways responsible for adjuvant effects. This 
approach has been described for adjuvants containing different cationic lipids or Toll-
like receptor ligands in experimental M. hyopneumoniae vaccines (Mattijis et al., 
2019). In these experiments, cationic lipid adjuvants, which were associated with the 
highest serum antibody titers post vaccination, induced rapid but transient 
upregulation (generally limited to the first day after vaccination) in blood transcription 
modules related to myeloid cell activation in vaccinated pigs.  

Investigation of adverse vaccine reactions  
Just as systems vaccinology approaches can be used to reveal genes or pathways 
associated with the response to a vaccine or adjuvant, they can also be used to 
dissect adverse vaccine responses, in order to prevent them (Gonzalez-Dias et al., 
2020). To investigate the mechanistic basis of bovine neonatal pancytopenia, an 
adverse reaction linked to cattle vaccinated with inactivated bovine viral diarrhea 
virus (BVDV) vaccines, Demasius et al. (2013) analyzed whole blood transcriptome 
of vaccinated cattle. Perhaps surprisingly, the analysis identified evidence of a 
coordinated response to double stranded RNA, but not, as expected, to alloantigens. 
The investigation also led to the discovery of a gene for an apparently novel 
cytokine, which was strongly upregulated in vaccinated cattle. Together these 
findings provided evidence of unexpected aspects of the pathogenesis of neonatal 
pancytopenia, although further research will be necessary to establish the 
significance of these findings.  
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Systems vaccinology, summary 
The immune response to a vaccine is the result of coordinated interaction of 
thousands of events. Given this situation, it is perhaps not surprising that research 
focused on a handful of molecules or cells sometimes fails to explain why a vaccine 
induces--or fails to induce--protection. Global assessment of gene activation in blood 
or other tissues through assessment of the transcriptome can provide new insights 
regarding mechanisms of vaccine efficacy. While reports to date have rarely 
combined assessment of the transcriptome with protein and metabolite expression 
(the “proteome” and the “metabolome”), as technology progresses and costs 
decrease, the simultaneous assessment of these components may provide yet more 
useful information. Currently such multi-modal approaches are limited by the cost or 
technical demands that limit the number of individuals that can be studied, and thus 
limit the power and generalizability of the research. However, given that the price of 
nucleic acid sequencing has steadily decreased since the discovery of DNA, it is 
likely that the limits due to cost will eventually be lifted. Continued advances in the 
field of bioinformatics should also improve the feasibility of systems vaccinology 
approaches. Used in tandem with classical methods to confirm new discoveries, 
systems vaccinology has clear potential to support the development and delivery of 
safer and more effective vaccines. 

References 
Agnew-Crumpton, R,, Vaz, P.K., Devlin, J.M., O'Rourke, D,, Blacker-Smith, H.P., 

Konsak-Ilievski, B., Hartley, C.A., and Noormohammadi, A.H. (2016). Spread of the 
newly emerging infectious laryngotracheitis viruses in Australia. Infect Genet Evol. 
43, 67-73. DOI: 10.1016/j.meegid.2016.05.023. 

Blanchard, M.T., Chen, C.I., Anderson, M., Hall, M.R., Barthold, S.W., and Stott, J.L. 
(2010). Vet Microbiol 144, 177-182. DOI: 10.1016/j.vetmic.2010.01.002. 

Blum, J.S., Wearsch, P.A., and Cresswell, P. (2013). Pathways of antigen 
processing. Annu Rev Immunol 31, 443-473.  

Borrow, R., Carlone, G.M., Rosenstein, N., Blake, M., Feavers, I., Martin, D., 
Zollinger, W., Robbins, J., Aaberge, I., Granoff, D.M., Miller, E., Plikaytis, B., van 
Alphen, L., Poolman, J., Rappuoli, R., Danzig, L., Hackell, J., Danve, B., Caulfield, 
M., Lambert, S., and Stephens, D. (2006). Neisseria meningitidis group B 
correlates of protection and assay standardization--international meeting report 

20



NGS, Bioinformatics and Protein Modeling                                           Woolums and Swiderski

Emory University, Atlanta, Georgia, United States, 16-17 March 2005. Vaccine 24, 
5093-5107.  

Boylston, A. (2013). The origins of vaccination: myths and reality. J R Soc Med 106, 
351-354. DOI: 10.1177/0141076813499292. 

Burton, D.R. (2017). What Are the Most Powerful Immunogen Design Vaccine 
Strategies? Reverse Vaccinology 2.0 Shows Great Promise. Cold Spring Harb 
Perspect Biol 9, pii: a030262. DOI: 10.1101/cshperspect.a030262. 

Capecchi, B., Serruto, D., Adu-Bobie, J., Rappuoli, R., and Pizza, M. (2004). The 
genome revolution in vaccine research. Curr Issues Mol Biol 6, 17-27.  

Chen, N., Trible, B.R., Kerrigan, M.A., Tian, K., Rowland, R.R.R. (2016). ORF5 of 
porcine reproductive and respiratory syndrome virus (PRRSV) is a target of 
diversifying selection as infection progresses from acute infection to virus rebound. 
Infect Genet Evol 40, 167-175.  

Carrasco Pro, S., Zimic, M., and Nielsen, M. (2014). Improved pan-specific MHC 
class I peptide-binding predictions using a novel representation of the MHC-binding 
cleft environment. Tissue Antigens 83, 94-100. DOI: 10.1111/tan.12292.  

Contreras, M., Villar, M., Artigas-Jerónimo, S., Kornieieva, L., Mуtrofanov, S., and de 
la Fuente, J. (2018). A reverse vaccinology approach to the identification and 
characterization of Ctenocephalides felis candidate protective antigens for the 
control of cat flea infestations. Parasit Vectors 11, 43. DOI: 10.1186/
s13071-018-2618-x. 

Correia, B.E., Bates, J.T., Loomis, R.J., Baneyx, G., Carrico, C., Jardine, J.G., 
Rupert, P., Correnti, C., Kalyuzhniy, O., Vittal, V., Connell, M.J., Stevens, E., 
Schroeter, A., Chen, M., Macpherson, S., Serra, A.M., Adachi, Y., Holmes, M.A., Li, 
Y., Klevit, R.E., Graham, B.S., Wyatt, R.T., Baker, D., Strong, R.K., Crowe, J.E. Jr., 
Johnson, P.R., and Schief, W.R. (2014). Proof of principle for epitope-focused 
vaccine design. Nature 507, 201-2016. DOI: 10.1038/nature12966. 

Crank, M.C., Ruckwardt, T.J., Chen, M., Morabito, K.M., Phung, E., Costner, P.J., 
Holman, L.A., Hickman, S.P., Berkowitz, N.M., Gordon, I.J., Yamshchikov, G.V., 
Gaudinski, M.R., Kumar, A., Chang, L.A., Moin, S.M., Hill, J.P., DiPiazza, A.T., 
Schwartz, R.M., Kueltzo, L., Cooper, J.W., Chen, P., Stein, J.A., Carlton, K., Gall, 
J.G., Nason, M.C., Kwong, P.D., Chen, G.L., Mascola, J.R., McLellan, J.S., 
Ledgerwood, J.E., Graham, B.S., and VRC 317 Study Team. (2019). A proof of 
concept for structure-based vaccine design targeting RSV in humans. Science. 
365, 505-509. DOI: 10.1126/science.aav9033. 

21



NGS, Bioinformatics and Protein Modeling                                           Woolums and Swiderski

Dalsass, M., Brozzi, A., Medini, D., and Rappuoli, R. (2019). Comparison of Open-
Source Reverse Vaccinology Programs for Bacterial Vaccine Antigen Discovery. 
Front Immunol 14, 113. DOI: 10.3389/fimmu.2019.00113. 

Dash, P., Fiore-Gartland, A.J., Hertz, T., Wang, G.C., Sharma, S., Souquette, A., 
Crawford, J.C., Clemens, E.B., Nguyen, T.H.O., Kedzierska, K., La Gruta, N.L., 
Bradley, P., and Thomas, P.G. (2017). Quantifiable predictive features define 
epitope-specific T cell receptor repertoires. Nature. 547, 89-93. DOI: 10.1038/
nature22383. 

Davis, M.M., and Boyd, S.D. (2019). Recent progress in the analysis of αβT cell and 
B cell receptor repertoires. Curr Opin Immunol 59, 109-114.  

DeKosky, B.J., Ippolito, G.C., Deschner, R.P., Lavinder, J.J., Wine, Y., Rawlings, 
B.M., Varadarajan, N., Giesecke, C., Dörner, T., Andrews, S.F., Wilson, P.C., 
Hunicke-Smith, S.P., Willson, C.G., Ellington, A.D., and Georgiou, G. (2013). High-
throughput sequencing of the paired human immunoglobulin heavy and light chain 
repertoire. Nat Biotechnol 31, 166-169.  

DeLisi, C., and Berzofsky, J.A. (1985). T-cell antigenic sites tend to be amphipathic 
structures. Proc Natl Acad Sci U.S.A. 82, 7048-7052.  

Demasius, W., Weikard, R., Hadlich, F., Müller, K.E., and Kühn, C. (2013). 
Monitoring the immune response to vaccination with an inactivated vaccine 
associated to bovine neonatal pancytopenia by deep sequencing transcriptome 
analysis in cattle. Vet Res 44, 93. DOI: 10.1186/1297-9716-44-93. 

Dhanda, S.K., Usmani, S.S., Agrawal, P., Nagpal, G., Gautam, A., and Raghava, 
G.P.S. (2017). Novel in silico tools for designing peptide-based subunit vaccines 
and immunotherapeutics. Brief Bioinform 18, 467-478. DOI: 10.1093/bib/bbw025. 

Diaz-San Segundo, F., Medina, G.N., Stenfeldt, C., Arzt, J., and de Los Santos, T. 
(2017). Food-and-mouth disease vaccines. Vet Microbiol 206, 102-112. DOI: 
10.1016/j.vetmic.2016.12.018. 

Ferdous, S., Kelm, S., Baker, T.S., Shi, J., and Martin, A.C.R. (2019). B-cell epitopes: 
Discontinuity and conformational analysis. Mol Immunol 114, 643-650. DOI: 
10.1016/j.molimm.2019.09.014. 

Fisher, C.R., and Schnell, M.J. (2018). New developments in rabies vaccination. Rev 
Sci Technology 37, 657-672. DOI: 10.20506/rst.37.2.2831. 

Gilman, M.S., Castellanos, C.A., Chen, M., Ngwuta, J.O., Goodwin, E., Moin, S.M., 
Mas, V., Melero, J.A., Wright, P.F., Graham, B.S., McLellan, J.S., and Walker, L.M. 
(2016). Rapid profiling of RSV antibody repertoires from the memory B cells of 

22



NGS, Bioinformatics and Protein Modeling                                           Woolums and Swiderski

naturally infected adult donors. Sci Immunol 1, pii: eaaj1879. doi: 10.1126/
sciimmunol.aaj1879.  

Giuliani, M.M., Adu-Bobie, J., Comanducci, M., Aricò, B., Savino, S., Santini, L., 
Brunelli, B., Bambini, S., Biolchi, A., Capecchi, B., Cartocci, E., Ciucchi, L., Di 
Marcello, F., Ferlicca, F., Galli, B., Luzzi, E., Masignani, V., Serruto, D., Veggi, D., 
Contorni, M., Morandi, M., Bartalesi, A., Cinotti, V., Mannucci, D., Titta, F., Ovidi, E., 
Welsch, J.A., Granoff, D., Rappuoli, Rl, and Pizza, M. (2006). A universal vaccine 
for serogroup B meningococcus. Proc Natl Acad Sci USA 103, 10834-10839.  

Gonzalez-Dias, P., Lee, E.K., Sorgi, S., de Lima, D.S., Urbanski, A.H., Silveira, E.L., 
and Nakaya, H,I. (2020). Methods for predicting vaccine immunogenicity and 
r e a c t o g e n i c i t y . H u m Va c c i n I m m u n o t h e r 1 6 , 2 6 9 - 2 7 6 . D O I : 
10.1080/21645515.2019.1697110 

Greenbaum, J.A., Andersen, P.H., Blythe, M., Bui, H.H., Cachau, R.E., Crowe, J., 
Davies, M., Kolaskar, A.S., Lund, O., Morrison, S., Mumey, B., Ofran, Y., Pellequer, 
J.L., Pinilla, C., Ponomarenko, J.V., Raghava, G.P., van Regenmortel, M.H., 
Roggen, E.L., Sette, A., Schlessinger, A., Sollner, J., Zand, M., and Peters, B. 
(2007). Towards a consensus on datasets and evaluation metrics for developing B-
cell epitope prediction tools. J Mol Recognit 20, 75-82.  

Greenwood B. (2014). The contribution of vaccination to global health: past, present 
and future. Philos Trans R Soc Lond B Biol Sci 369, 20130433. DOI: 10.1098/rstb.
2013.0433. 

Gupta, S., Ansari, H.R., Gautam, A., Open Source Drug Discovery Consortium, and 
Raghava, G.P. (2013). Identification of B-cell epitopes in an antigen for inducing 
specific class of antibodies. Biol Direct 8, 27. DOI: 10.1186/1745-6150-8-27. 

Gutiérrez, A.H., Martin, W.D., Bailey-Kellogg, C., Terry, F., Moise, L., and DeGroot, 
A.S. (2015). Development and validation of an epitope prediction tool for swine 
(PigMatrix) based on the pocket profile method. BMC Bioinformatics 16, 290. DOI: 
10.1186/s12859-015-0724-8.  

Hagen, T., and Pulendran, B. (2019). Will systems biology deliver its promise and 
contribute to the development of new or improved vaccines? Cold Spring Harb 
Perspect Biol 10, DOI:10.1101/cshperspect.a028894. 

Haining, W.N. (2014). Strength in numbers: comparing vaccine signatures the 
modular way. Nat Immunol 15, 139-141.  

23



NGS, Bioinformatics and Protein Modeling                                           Woolums and Swiderski

Hansen, A.M., Rasmussen, M., Svitek, N., Harndahl, M., Golde, W.T., Barlow, J., 
Vishvanath, N., Buus, S., and Nielsen, M. (2014). Immunogenetics 66, 705-718. 

DOI: 10.1007/s00251-014-0802-5.  
Hassan, A., Naz, A., Obaid A., Paracha, R.Z., Naz, K., Awan, F.M., Muhmmad, S.A., 

Janjua, H.A., Ahmad, J., and Ali, A. (2016). Pangenome and immuno-proteomics 
analysis of Acinetobacter baumannii strains revealed the core peptide vaccine 
targets. BMC Genomics 17, 732. DOI: 10.1186/s12864-016-2951-4. 

Hewitt, J.S., Karuppannan, A.K., Tan, S., Gauger, P., Halbur, P.G., Gerber, P.F., 
DeGroot, A.S., Moise, L., and Opriessnig, T. (2019). A prime-boost concept using a 
T-cell epitope-driven DNA vaccine followed by a whole virus vaccine effectively 
protected pigs in the pandemic H1N1 pig challenge model. Vaccine 37, 4302-4309. 
DOI: 10.1016/j.vaccine.2019.06.044.  

HIPC-CHI Signatures Project Team and HIPC-I Consortium. (2017). Multicohort 
analysis reveals baseline transcriptional predictors of influenza vaccination 
responses. Sci Immunol 2, DOI:10.1126/sciimmunol.aal4656. 

Hoof, K., Peters, B., Sidney, J., Pedersen, L.E., Sette, A., Lund, O., Buus, S., and 
Nielsen, M. (2009). NetMHCpan, a method for MHC class I binding prediction 
beyond humans. Immunogenetics 61, 1-13. DOI: 10.1007/s00251-008-0341-z.  

Jardetzky, T.S., Brown, J.H., Gorga, J.C., Stern, L.J., Urban, R.G., Strominger, J.L., 
and Wiley, D.C. (1996). Crystallographic analysis of endogenous peptides 
associated with HLA-DR1 suggests a common, polyproline II-like conformation for 
bound peptides. Proc Natl Acad Sci U.S.A. 23, 734-738.  

Jespersen, M.C., Peters, B., Nielsen, M., and Marcatili, P. (2017). BepiPred-2.0: 
improving sequence-based B-cell epitope prediction using conformational epitopes. 
Nucleic Acids Res 45, W24-W29. DOI: 10.1093/nar/gkx346. 

Jespersen, M.C., Mahajan, S., Peters, B., Nielsen, M., and Marcatili, P. (2019). 
Antibody Specific B-Cell Epitope Predictions: Leveraging Information From 
Antibody-Antigen Protein Complexes. Front Immunol 10, 298. DOI: 10.3389/fimmu.
2019.00298. 

Jurtz, V., Paul, S., Andreatta, M., Marcatilli, P., Peters, B., and Nielsen, M. (2017). 
NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating 
eluted ligand and peptide binding affinity data. J Immunol 199, 3360-3368. DOI: 
10.4049/jimmunol.1700893.  

 Kapikian, A.Z., Mitchell, R.H., Chanock, R.M., Shvedoff, R.A., and Stewart, C.E. 
(1969). An epidemiologic study of altered clinical reactivity to respiratory syncytial 

24



NGS, Bioinformatics and Protein Modeling                                           Woolums and Swiderski

(RS) virus infection in children previously vaccinated with an inactivated RS virus 
vaccine. Am J Epidemiol 89, 405-421.  

Kringelum, J.V., Lundegaard, C., Lund, O., and Nielsen, M. (2012). Reliable B cell 
epitope predictions: impacts of method development and improved benchmarking. 
PLoS Comput Biol 8, e1002829. DOI: 10.1371/journal.pcbi.1002829. 

Kringelum, J.V., Nielsen, M., Padkjær, S.B., and Lund, O. (2013). Structural analysis 
of B-cell epitopes in antibody:protein complexes. Mol Immunol 53, 24-34. DOI: 
10.1016/j.molimm.2012.06.001. 

Li, S., Rouphael, N., Duraisingham, S., Romero-Steiner, S., Presnell, S., Davis, C., 
Schmidt, D.S., Johnson, S.E., Milton, A., Rajam, G., Kasturi, S., Carlone, G.M., 
Quinn, C., Chaussabel, D., Palucka, A.K., Mulligan, M.J., Ahmed, R., Stephens, 
D.S., Nakaya, H.I., and Pulendran, B. (2014). Molecular signatures of antibody 
responses derived from a systems biology study of five human vaccines. Nat 
Immunol 15, 195-204. DOI: 10.1038/ni.2789. 

Li, J.N., Zhao, Y.T., Cao, S.L., Wang, H., and Zhang, J.J. (2020). Integrated 
transcriptomic and proteomic analyses of grass carp intestines after vaccination 
with a double-targeted DNA vaccine of Vibrio mimicus. Fish Shellfish Immunol 98, 
641-652. DOI: 10.1016/j.fsi.2019.10.045. 

Lund, O., Nielsen, M., Kesmir, C., Petersen, A.G., Lundegaard, C., Worning, P., 
Sylvester-Hvid, C., Lamberth, K., Røder, G., Justesen, S., Buus, S., and Brunak, S. 
(2004). Definition of supertypes for HLA molecules using clustering of specificity 
matrices. Immunogenetics 55, 797-810. Doi: 10.1007/s00251-004-0647-4.  

Lundegaard, C., Hoof, I., Lund, O., and Nielsen, M. (2010). State of the art and 
challenges in sequence based T-cell epitope prediction. Immunome Res 6, Suppl 
2:S3. DOI: 10.1186/1745-7580-6-S2-S3. 

Luo, J., Carrillo, J.A., Menendez, K.R., Tablante, N.L., and Song, J. (2014). 
Transcriptome analysis reveals an activation of major histocompatibility complex 1 
and 2 pathways in chicken trachea immunized with infectious laryngotracheitis 
virus vaccine. Poult Sci 93, 848-855. DOI: 10.3382/ps.2013-03624. 

Magro, M., Mas, V., Chappell, K., Vázquez, M., Cano, O., Luque, D., Terrón, M.C., 
Melero, J.A., and Palomo, C. (2012). Neutralizing antibodies against the preactive 
form of respiratory syncytial virus fusion protein offer unique possibilities for clinical 
intervention. Proc Natl Acad Sci U.S.A. 109, 3089-3094. DOI: 10.1073/pnas.
1115941109. 

25



NGS, Bioinformatics and Protein Modeling                                           Woolums and Swiderski

Madden, D.R., (1995) The three-dimensional structure of peptide-MHC complexes. 
Annu Rev Immunol 13, 587-622. 

Margalit, H., Spouge, J.L., Cornette, J.L., Cease, K.B., Delisi, C., and Berzofsky, 
J.A.. (1987). Prediction of immunodominant helper T cell antigenic sites from the 
primary sequence. J Immunol 138, 2213-2229.  

Matthijs, A.M.F., Auray, G., Jakob, V., García-Nicolás, O., Braun, R.O., Keller, I., 
Bruggman, R., Devriendt, B., Boyen, F., Guzman, C.A., Michiels, A., Haesebrouck, 
F., Collin, N., Barnier-Quer, C., Maes, D., and Summerfield, A. (2019). Systems 
Immunology Characterization of Novel Vaccine Formulations for Mycoplasma 
hyopneumoniae Bacterins. Front Immunol 10, 1087. DOI: 10.3389/fimmu.
2019.01087. 

Mei, S., Li, F., Leier, A., Marquez-Lago, T.T., Giam, K., Croft, N.P., Akutsu, T., Smith, 
A.I., Li, J., Rossjohn, J., Purcell, A.W., and Song, J. (2019). A comprehensive 
review and performance evaluation of bioinformatics tools for HLA class I peptide-
binding prediction. Brief Bioinform June 14 bbz051. DOI: 10.1093/bib/bbz051.  

Mitsunaga, E.M., and Snyder, M.P. (2020). Deep Characterization of the Human 
Antibody Response to Natural Infection Using Longitudinal Immune Repertoire 
Sequencing. Mol Cell Proteomics 19, 278-293. DOI: 10.1074/mcp.RA119.001633. 

Moxon, R., Reche, P.A., and Rappuoli, R. (2019). Reverse vaccinology. Front 
Immunol 3, 2776. DOI: 10.3389/fimmu.2019.02776.  

Nakaya, H.I., Wrammert, J., Lee, E.K., Racioppi, L., Marie-Kunze, S., Haining, W.N., 
Means, A.R., Kasturi, S.P., Khan, N., Li, G.M., McCausland, M., Kanchan, V., 
Kokko, K.E., Li, S., Elbein, R., Mehta, A.K., Aderem, A., Subbarao, K., Ahmed, R., 
and Pulendran, B. (2011). Systems biology of vaccination for seasonal influenza in 
humans. Nat Immunol 12, 786-795. DOI: 10.1038/ni.2067. 

Nielsen, M., Connelley, T., and Ternette, N. (2018). Improved prediction of bovine 
leucocyte antigens (BoLA) presented ligands by use of mass-spectrometry-
determined ligand and in vitro binding data. J Proteome Res 17, 559-567. Doi: 
10.1021/acs.jproteome.7b00675.  

Novotný, J., Handschumacher, M., Haber, E., Bruccoleri, R.E., Carlson, W.B., 
Fanning, D.W., Smith, J.A., and Rose, G.D. (1986). Antigenic determinants in 
proteins coincide with surface regions accessible to large probes (antibody 
domains). Proc Natl Acad Sci U.S.A. 83, 226-230.  

Oh, J.Z., Ravindran, R., Chassaing, B., Carvalho, F.A., Maddur, M.S., Bower, M., 
Hakimpour, P., Gill, K.P., Nakaya, H.I., Yarovinsky, F., Sartor, R.B., Gewirtz, A.T., 

26



NGS, Bioinformatics and Protein Modeling                                           Woolums and Swiderski

and Pulendran, B. (2014). TLR5-mediated sensing of gut microbiota is necessary 
for antibody responses to seasonal influenza vaccination. Immunity 41, 478-492. 
DOI: 10.1016/j.immuni.2014.08.009. 

Painter, C.A., and Stern, L.J. (2012). Conformational variation in structures of 
classical and non-classical MHCII proteins and functional implications. Immunol 
Rev 250, 144-157.  

Pandya, M., Rasmussen, M., Hansen, A., Nielsen, M., Buus, S., Golde, W., and 
Barlow, J. (2015). A modern approach for epitope prediction: identification of food-
and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I 
molecules. Immunogenetics 67, 691-703. Doi: 10.1007/s00251-015-0877-7.  

Pedersen, L.E., Harndahl, M., Nielsen, M., Patch, J.R., Jungersen, G., Buus, S., and 
Golde, W.T. (2013). Identification of peptides from foot-and-mouth disease virus 
structural proteins bound by class I swine leukocyte antigen (SLA) alleles, 
SLA-1*0401 and SLA-2*0401. Anim Genet 44, 251-258. DOI: 10.1111/j.
1365-2052.2012.02400.x.  

Pizza, M., Scarlato, Vl, Masignani, V., Giuliani, M.M., Aricò, B., Comanducci, M., 
Jennings, G.T., Baldi, L., Bartolini, E., Capecchi, B., Galeotti, C.L., Luzzi, E., 
Manetti, R., Marchetti, E., Mora, M., Nuti, S., Ratti, G., Santini, L., Savino, S., 
Scarselli, M., Storni, E., Zuo, P., Broeker, M., Hundt, E., Knapp, B., Blair, E., 
Mason, T., Tettelin, H., Hood, D.W., Jeffries, A.C., Saunders, N.J., Granoff, D.M., 
Venter, J.C., Moxon, E.R., Grandi, G., and Rappuoli, R. (2000). Identification of 
vaccine candidates against serogroup B meningococcus by whole-genome 
sequencing. Science 10, 1816-1820.  

Pretorius, A., Faber, F.E., and van Kleef, M. (2016). Immune gene expression 
profiling of PBMC isolated from horses vaccinated with attenuated African 
horsesickness virus serotype 4. Immunobiology 221, 236-244. DOI: 10.1016/
j.imbio.2015.09.002 

Pulendran, B., Li, S., and Nakaya, H.I. (2010). Systems vaccinoilogy. Imunity 33, 
516-529. DOI: 10.1016/j.immuni.2010.10.006. 

Querec, T.D., Akondy, R.S., Lee, E.K., Cao, W., Nakaya, H.I., Teuwen, D., Pirani, A., 
Gernert, K., Deng, J., Marzolf, B., Kennedy, K., Wu, H., Bennouna, S., Oluoch, H., 
Miller, J., Vencio, R.Z., Mulligan, M., Aderem, A., Ahmed, R., and Pulendran, B1. 
(2009) Systems biology approach predicts immunogenicity of the yellow fever 
vaccine in humans. Nat Immunol 10, 116-125. DOI: 10.1038/ni.1688. 

27



NGS, Bioinformatics and Protein Modeling                                           Woolums and Swiderski

Rahman, Kh.S., Chowdhury, E.U., Sachse, K, and Kaltenboeck, B. (2016). 
Inadequate Reference Datasets Biased toward Short Non-epitopes Confound B-
cell Epitope Prediction. J Biol Chem 291, 14585-14599. DOI: 10.1074/
jbc.M116.729020. 

Rammensee, H.G., Friede, T., and Stevanoviic, S. (1995). MHC ligands and peptide 
motifs: first listing. Immunogenetics 41, 178-228.  

Rappuoli, R. (2000). Reverse vaccinology. Curr Opin Microbiol 3, 445-450. 
Rappuoli, R. (2007). Bridging the knowledge gaps in vaccine design. Nat Biotechnol. 

25, 1361-1366.  
Rappuoli, R., Bottomley, M.J., D'Oro, U., Finco, O., and De Gregorio, E. (2016). 

Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. J 
Exp Med 213, 469-481. DOI: 10.1084/jem.20151960. 

Reyes, V.E., Chin, L.T., and Humphreys, R.E. (1988). Selection of class I MHC-
restricted peptides with the strip-of-helix hydrophobicity algorithm. Mol Immunol 25, 
867-871.  

Robinson, J., Guethlein, L.A., Cereb, N., Yang, S.Y., Norman, P.J., Marsh, S.G.E., 
and Parham, P. (2017). Distinguishing functional polymorphism from random 
variation in the sequences of >10,000 HLA-A, -B and -C alleles. PLoS Genet 13, 
e1006862. DOI: 10.1371/journal.pgen.1006862. 

Rock, K.L., Reits, E., and Neefjes, J. (2016). Present Yourself! By MHC Class I and 
MHC Class II Molecules. Trends Immunol 37, 724-737. DOI: 10.1016/j.it.
2016.08.010. 

Saada, R., Weinberger, M., Shahaf, G., and Mehr, R. (2007). Models for antigen 
receptor gene rearrangement: CDR3 length. Immunol Cell Biol 85, 323-332.  

Sant, S., Grzelak, L., Wang, Z., Pizzolla, A., Koutsakos, M., Crowe, J., Loudovaris, 
T., Mannering, S.I., Westall, G.P., Wakim, L.M., Rossjohn, J., Gras, S., Richards, 
M., Xu, J., Thomas, P.G., Loh, L., Nguyen, T.H.O., and Kedzierska, K. (2018). 
Single-Cell Approach to Influenza-Specific CD8+ T Cell Receptor Repertoires 
Across Different Age Groups, Tissues, and Following Influenza Virus Infection. 
Front Immunol 9, 1453. DOI: 10.3389/fimmu.2018.01453. 

Saravanan, V. and Gautham, N. (2018). BCIgEPRED-a dual-layer approach for 
predicting linear IgE epitopes. Mol Biol (Mosk) 52, 333-343. DOI: 10.7868/
S0026898418020180. 

28



NGS, Bioinformatics and Protein Modeling                                           Woolums and Swiderski

Sela-Culang, I., Ofran, Y., and Peters, B. (2015). Antibody specific epitope prediction-
emergence of a new paradigm. Curr Opin Virol 11, 98-102. DOI: 10.1016/j.coviro.
2015.03.012.  

Serruto, D., Bottomley, M.J., Ram, S., Giuliani, M.M., and Rappuoli, R. (2012). The 
new multicomponent vaccine against meningococcal serogroup B, 4CMenB: 
immunological, functional and structural characterization of the antigens. Vaccine 
30, 30. DOI: 10.1016/j.vaccine.2012.01.033. 

Stave, J.W. and Lindpainter, K. (2013). Antibody and antigen contact residues define 
epitope and paratope size and structure. J Immunol 191, 1428-1435. DOI: 
10.4049/jimmunol.1203198. 

Stern, L.J., Brown, J.H., Jardetzky, T.S., Gorga, J.C., Urban, R.G., Strominger, J.L., 
and Wiley, D.C. (1994). Crystal structure of the human class II MHC protein HLA-
DR1 complexed with an influenza virus peptide. Nature 368, 215-221.  

Stille, C.J., Thomas, L.J., Reyes, V.E., and Humphreys, R.E. (1987). Hydrophobic 
strip-of-helix algorithm for selection of T cell-presented peptides. Mol Immunol 24, 
1021-1027.  

Sundling, C., Martinez, P., Soldemo, M., Spångberg, M., Bengtsson, K.L., Stertman, 
L., Forsell, M.N., and Karlsson Hedestam, G.B. (2013). Immunization of macaques 
with soluble HIV type 1 and influenza virus envelope glycoproteins results in a 
similarly rapid contraction of peripheral B-cell responses after boosting. J Infect Dis 
207, 426-431. DOI: 10.1093/infdis/jis696. 

Svitek, N., Hansen, A.M., Steinaa, L., Saya, R., Awino, E., Nielsen, M., Buus, S., and 
Nene, V. (2014). Use of “one-pot, mix-and-read” peptide-MHC class I tetramers 
and predictive algorithms to improve detection of cytotoxic T lymphocyte response 
in cattle. Vet Res 45, 50. DOI: 10.1186/1297-9716-45-50.  

Terasaki, P.I. (2007). A brief history of HLA. Immunol Res 38, 139-148. DOI: 10.1007/
s12026-007-0020-4 

Tettelin, H,, Saunders, N.J., Heidelberg, J., Jeffries, A.C., Nelson, K.E., Eisen, J.A., 
Ketchum, K.A., Hood, D.W., Peden, J.F., Dodson, R.J., Nelson, W.C., Gwinn, M.L., 
DeBoy, R., Peterson, J.D., Hickey, E.K., Haft, D.H., Salzberg, S.L., White, O., 
Fleischmann, R.D., Dougherty, B.A., Mason, T., Ciecko, A., Parksey, D.S., Blair, E., 
Cittone, H., Clark, E.B., Cotton, M.D., Utterback, T.R., Khouri, H., Qin, H., 
Vamathevan, J., Gill, J., Scarlato, V., Masignani, V., Pizza, M., Grandi, G., Sun, L., 
Smith, H.O., Fraser, C.M., Moxon, E.R., Rappuoli, R., and Venter, J.C. (2000). 

29



NGS, Bioinformatics and Protein Modeling                                           Woolums and Swiderski

Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. 
Science 287, 1809-1815.  

Tomazic, M.L., Rodriguez, A.E., Lombardelli, J., Poklepovich, T., Garro, C., Galarza, 
R., Tiranti, K., Florin-Christensen, M., and Schnittger, L. (2018). Identification of 
novel vaccine candidates against cryptosporidiosis of neonatal bovines by reverse 
vaccinology. Vet Parasitol 264, 74-78. DOI: 10.1016/j.vetpar.2018.11.007. 

Vahey, M.T., Wang, Z., Kester, K.E., Cummings, J., Heppner, D.G. Jr, Nau, M.E., 
Ofori-Anyinam, O., Cohen, J., Coche, T., Ballou, W.R., and Ockenhouse, C.F. 
(2010). Expression of genes associated with immunoproteasome processing of 
major histocompatibility complex peptides is indicative of protection with 
adjuvanted RTS,S malaria vaccine. J Infect Dis 201, 580-589. DOI: 
10.1086/650310.  

Van Regenmortel, M.H. (2014). Specificity, polyspecificity, and heterospecificity of 
antibody-antigen recognition. J Mol Recognit 27, 627-639. DOI: 10.1002/jmr.2394. 

Waickman, A.T., Victor, K., Li, T., Hatch, K., Rutvisuttinunt, W., Medin, C., Gabriel, B., 
Jarman, R.G., Friberg, H., and Currier, J.R. (2019). Dissecting the heterogeneity of 
DENV vaccine-elicited cellular immunity using single-cell RNA sequencing and 
metabolic profiling. Nat Commun 10, 3666. DOI: 10.1038/s41467-019-11634-7. 

Welly, B.T., Miller, M.R., Stott, J.L., Blanchard, M.T., Islas-Trejo, A.D., O'Rourke, 
S.M., Young, A.E., Medrano, J.F., and Van Eenennaam, A.L. (2017). Genome 
Report: Identification and Validation of Antigenic Proteins from Pajaroellobacter 
abortibovis Using De Novo Genome Sequence Assembly and Reverse 
Vaccinology. G3. 7, 321-331. DOI: 10.1534/g3.116.036673. 

30


	Contents
	1
	2
	3
	4
	5
	6
	7

