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Abstract
Traditional taxonomy in biology assumes that life is organized in a simple tree. Attempts 
to classify microorganisms in this way in the genomics era led microbiologists to look for 
finite sets of ‘core’ genes that uniquely group taxa as clades in the tree. However, the diver-
sity revealed by large-scale whole genome sequencing is calling into question the long-held 
model of a hierarchical tree of life, which leads to questioning of the definition of a species. 
Large-scale studies of microbial genome diversity reveal that the cumulative number of 
new genes discovered increases with the number of genomes studied as a power law and 
subsequently leads to the lack of evidence for a unique core genome within closely related 
organisms. Sampling ‘enough’ new genomes leads to the discovery of a replacement or alter-
native to any gene. This power law behaviour points to an underlying self-organizing critical 
process that may be guided by mutation and niche selection. Microbes in any particular 
niche exist within a local web of organism interdependence known as the microbiome. 
The same mechanism that underpins the macro-ecological scaling first observed by Mac-
Arthur and Wilson also applies to microbial communities. Recent metagenomic studies 
of a food microbiome demonstrate the diverse distribution of community members, but 
also genotypes for a single species within a more complex community. Collectively, these 
results suggest that traditional taxonomic classification of bacteria could be replaced with a 
quasispecies model. This model is commonly accepted in virology and better describes the 
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diversity and dynamic exchange of genes that also hold true for bacteria. This model will 
enable microbiologists to conduct population-scale studies to describe microbial behaviour, 
as opposed to a single isolate as a representative.

Introduction
For over 280 years biologists have classified living organisms using a system first proposed by 
Carl Linnaeus. This system developed as scientists grouped organisms based on observable 
characteristics (phenotypes), usually biochemical reactions, into a hierarchical taxonomic 
tree. This model has guided research ever since (Ruggiero et al., 2015). Today, for the first 
time, microbiologists are engaged in describing the diversity of microbial life on earth utiliz-
ing technological advances in high-throughput sequencing and whole genome sequences 
(WGS). To obtain a bacterial genome, microbiologists use pure culture techniques to grow 
and isolate colonies that were commonly called ‘clonal’, prior to WGS, because the handful 
of selected biochemical tests were identical among the isolates. Extracting DNA from these 
colonies, high-throughput sequencing is used to obtain a consensus or average genome 
(Draper et al., 2017) that is often described to be the prototypical genome. With a conven-
tional world view of taxonomy, this ‘clonal’ genome is considered to define the organism’s 
taxonomic class (i.e. species) and is thought to have a core or conserved set of genes that 
can be used to ascribe genes (i.e. traits) for use as unique identifiers that provide a basis for 
creating a group or clade on a hierarchal tree.

As WGS provides more data, it has become clear that isolated colonies are not clonal, and 
outbreaks are not represented by clonal organisms; rather, outbreaks are associated with a 
distribution of pathogenic genotypes. The observed diversity calls into question the concept 
of a species if enough diversity is captured from various sources of that specific organism. 
It is possible that the genome diversity is so high that the concept of a prototypical genome 
that represents a species or even serotype cannot be associated with a single conserved 
genome. As ever more bacterial genomes are sequenced, more variants are discovered. The 
taxonomy designed to classify them continues to fragment into ever more classes if the cur-
rent hierarchal tree approach is maintained.

This diversity has driven the use of WGS to produce reference sequences for use in out-
break identification and investigation. A benefit to this work is production of vast numbers 
of data accessible for scientific research and comparison that are now uncovering evidence 
of genome diversity on a scale we have not contemplated. There has been an unprecedented 
increase in WGS and public release of new genomes is approaching 100,000 per year – a 
scale that was not anticipated 5 years ago. The repositories are often public and include the 
National Center for Biotechnology Information (NCBI), Sequence Read Archive (SRA), 
European Nucleotide Archive (ENA), DNA Data Bank of Japan (DDBJ), Genomic Ency-
clopedia of Bacteria and Archaea (GEBA), and multinational 100K Pathogen Genome 
Project (Allard, 2015; Weimer, 2012, 2107; Wu et al., 2009). The crowd-sourced data in 
these WGS databases has resulted in cataloging of a plethora of microbial genomes and has 
assisted in the examination of the metagenomics of ecological niches important in medicine, 
agriculture, energy, and the built environment (Alivisatos et al., 2015; Locey and Lennon, 
2016; Shapiro et al., 2012), all of which relies on reference genome databases.

The implementation of large-scale genomics in microbiology gives rise to observations 
previously impossible from the observations of a few isolates. In particular, the observed 
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genome diversity challenges long-held beliefs about genome stability, evolutionary rate, and 
even the definition of a species (Doolittle, 1999; Doolittle and Brunet, 2016). Indeed, the 
number of unique genes that are represented within a species, known as the ‘pan-genome’, 
continues to increase as the expected number of genes conserved across all the members of a 
species, known as the ‘core-genome’, diminishes. This powers a new ability to define the tra-
jectory of novel gene discovery to evoke consideration of the advances made by naturalists 
and applied to animals and theories of animal ecology. With the scale of genomes available 
the same considerations can be made when examining the diversity of microbial life and 
microbiome membership. Application of ecological theory provides a new perspective on 
microbiome structure and enables new insights into community association and member-
ship that have not been examined in detail.

On a macroscopic scale, MacArthur and Wilson’s macro-ecological ‘theory of island 
biogeography’ is a well-established explanation for species diversity across geographically 
disconnected groups (Diamond, 1984; Lovejoy et al., 1984, 1986; MacArthur and Wilson, 
1963). This theory relates the number of species (S) found, in steady state, within the area 
(A) of an isolated ecosystem as a power law. Over five orders of area magnitude, S varies as 
Az with z, the MacArthur–Wilson exponent, typically in the range of 0.2 < z < 0.3, decreas-
ing slightly for island groups nearer to continental land masses that enable a slow exchange 
of species.

MacArthur-Wilson attributes the steady state species–area relationship to the rate of 
successful immigration of new species (from distant continental reservoirs) and the rate 
of species extinction, both dependent on the availability of viable niches (MacArthur and 
Wilson, 1963). The number of niches depends, in turn, on the available land area. Wilson’s 
work also demonstrates that the surviving organisms can, themselves, provide niches for 
other organisms in the community, including new migrants (Wilson, 1999). As such, the 
observed scale-free behaviour in macro-ecology depends not only on the geographical 
distribution of land (Mandelbrot, 1983), but also on the dynamic evolution of the food 
web (Wilson, 1999). Indeed, ecological models and simulations based on Wilson’s work 
reveal that scale-free behaviour emerges only as the food web develops over time (Bak et 
al., 1988; Kaufman et al., 1998). This process is precisely the mechanism that Bak, Tang, 
and Wiesenfeld (BTW) predicted would lead to power law scaling in their theory of ‘self-
organized criticality’ (Bak et al., 1988; Mandelbrot, 1983).

Self-organized criticality (SOC) is a ubiquitous mechanism by which complexity arises 
in nature. The behaviours predicted by the SOC theory have been observed across a wide 
variety of fields including physics, geology, ecology, and neuroscience (Kaufman et al., 
1998; Linkenkaer-Hansen et al., 2001; Smalley et al., 1985). Bak et al. (1988) propose that 
self-organized criticality is a property of any dynamical system that has a critical point as 
an attractor. Such a critical point is often observable experimentally as power law diver-
gence of a correlation length of the system. In physics, critical behaviour often indicates a 
second-order phase transition. For example, the susceptibility of a ferromagnet diverges as 
the correlation length of magnetic moments diverges near the critical ‘Curie’ temperature 
(Kittel and Holcomb, 1967). Near a critical point, temporal and spatial system variables 
exhibit power law correlations. The value of the critical exponents for different variables are 
not the same, but they are not independent either. In fact they are related by simple scaling 
relations (Tang and Bak, 1988). Dynamical systems exhibit SOC if scaling emerges without 
the need to tune a control variable or effective temperature. This is the basis for the name of 
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the theory. The system is self-organized because it tunes itself. The critical point is an attrac-
tor of the dynamics. Typically, SOC systems are non-equilibrium but slowly driven (Bak 
and Paczuski, 1995). Evolutionary systems with low mutation rates satisfy this criterion. 
Typically, SOC systems have many degrees of freedom such as an ecosystem with a complex 
web of interdependence.

Metagenomic analysis and microbial life: a large-scale study
In this chapter we describe a large-scale study of gene diversity for thousands of public 
genomes and three different bacterial genera. Completed in collaboration with our research-
ers at IBM, the University of California Davis, and the US Food and Drug Administration, 
this work consists of experiments that quantify the diversity of genes, confirm the power law 
relationship, redefine taxonomic context, and invoke the quasispecies model for bacteria. 
To test these principles at the scale of genes and genomes, one must have access to an enor-
mous number of individuals (e.g. WGS) that reflect species diversity. The public databases 
of WGS provide the underlying data diversity. We took advantage of this large collection to 
examine the diversity for thousands of public genomes and three different genera to test the 
applications of BCW theory in the microbial world.

A growing library of genetic data
All WGS data are publicly available via NCBI (Weimer, 2012). The WGS were down-
loaded, assembled using ABySS (abyss-pe v.1.5.2) (Simpson et al., 2009), and annotated 
using Prokka (v.1.10) (Seemann, 2014) prior to the analysis. These include new WGS data, 
sequenced by the 100K Pathogen Genome Project (UC Davis, Davis, CA; Weimer, 2107), 
as described by Lüdeke et al. (2015), using Illumina paired end 100 methods, publicly 
released on the SRA in the 100K Pathogen Genome Project bioproject (PRJNA186441) 
and re-assembled for use in this study. To measure the cumulative rate of observation of 
‘new’ genes (both known and ‘putative’ or unknown) as a function of number of Salmonella 
isolates sampled, 866 individual Salmonella isolates were obtained from the 100K Pathogen 
Genome Project with de novo assembly with random subsets of those isolates selected in 
separate trials, followed by cumulative gene count determined for each trial.

To measure the cumulative rate of observation of ‘new’ Campylobacter genes as a function 
of the number of isolates sampled, the raw sequence data from 15,158 individual Campylo-
bacter isolates from public sources (Leinonen et al., 2010) were assembled and annotated 
as described for Salmonella. The number of genomes represents all available Campylobacter 
WGS data in the SRA, at the time of this publication, for which assembly was successful. 
The large number was chosen to test the observed scale-free behaviour over four orders of 
magnitude in the bootstrap as a function of the number of genomes.

Identification of core genes to build the phylogeny for E. coli was carried out with the 
Basic Local Alignment Search Tool (BLAST) with a criterion of 95% identity over 90% of 
the gene length, querying 42 closed reference genomes. An allowance was made whereby a 
core gene was retained if missing in no more than one genome. Alignment of the 3348 strain 
sequences for each gene yielded a single nucleotide polymorphism (SNP) set that was used 
to construct a phylogeny. From the phylogeny, 334 genotypes were selected to represent the 
diversity in the tree.
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Whole RNA metagenomes were produced using HiSeq 4000 or X instruments with 
one sample per lane, resulting in ~350 million reads/sample. Genomic distances were 
determined using the Meier-Kolthoff method (Meier-Kolthoff et al., 2013). Whole 
genome–genome distance matrices were translated into the Newick tree format using 
Mega7 with the neighbour-joining method. Genome distance matrixes were clustered and 
visualized using Matlab and R (Kumar et al., 2016). Genome–genome similarity is defined 
as 1.0 – genome–genome distance.

Diversity of genes
To quantify genome diversity, we examined the specific gene content by comparing indi-
vidual proteins from thousands of genomes from three different genera that occupy similar 
niches in animals: Salmonella, E. coli, and Campylobacter. All genomes were derived from 
publicly available WGS datasets where each organism was cultured, isolated, and sequenced. 
We performed a de novo assembly using ABySS (abyss-pe v.1.5.2) (Simpson et al., 2009) and 
gene annotation using Prokka (v.1.10) (Seemann, 2014) for each genome and then quanti-
fied the cumulative number of total genes (i.e. proteins) discovered as a function of number 
of isolates (genomes) sampled in multiple bootstrapped trials (Fig. 4.1).

Each point in Fig. 4.1 represents the cumulative number of distinct amino acid sequences 
(proteins) inferred for regions annotated as known or hypothetical proteins for one genome, 
plotted against the number of genomes or isolates in that subset, both known and unknown. 
The points were derived from 100 separate bootstrapped trials.

For the 866 individual Salmonella genomes obtained and re-assembled, the log of the 
genome diversity grows approximately linearly with the log of the number of isolates (Fig. 
4.1a), indicating a power law relationship with the average rate of cumulative gene discov-
ery, N, increasing with the number of isolates, η, as shown in Equation 4.1:

N ∝ η0.468 ± 0.001 (Salmonella) (4.1)

The same power law (within experimental error) was observed in an analysis of E. coli 
genomes (Fig. 4.1b). In this experiment, 3348 independent genome sequences were selected 
by classifying them into 334 genotypes to condense the data and search for a common 
reference representative with < 0.2% genetic difference. As with Salmonella (Fig.  4.1a), a 
power law emerged for E. coli relating the average rate of cumulative gene discovery, N, to 
the number of genotypes, η, as shown in Equation 4.2:

N ∝ η0.462 ± 0.002 (E. coli) (4.2)

To determine whether genome size and/or mutation rate contributes to variation in the 
exponent, we extended this investigation to another organism, Campylobacter (Fig. 4.1c). 
Campylobacter is often found in the same niche (e.g. chicken microbiome) and is known 
to have a much higher mutation rate than either E. coli or Salmonella (which have similar 
mutation rates). To compensate for the additional genetic inclusion rates, we increased the 
number of genomes to 15,158. This greatly expanded the scale of the genomic calculation 
yet produced a similar exponent to the other organisms, again demonstrating that genome 
diversity followed an approximate power law relating the rate of cumulative gene discovery, 
N, to the number of genotypes, η, as shown in Equation 4.3:
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N ∝ η0.645 ± 0.001 (Campylobacter) (4.3)

In Fig. 4.1, we deliberately use the same symbol (η) to denote both number of isolates 
(Fig. 4.1a andc) and number of genotypes (Fig. 4.1b). Each genotype represents a collec-
tion of isolates grouped in a data reduction effort. The power law behaviour observed in 
these studies of three different genera at completely different scales suggests a possibly 
universal functional relationship between the rate of new gene discovery and the number of 
genotypes or isolates over a wide range in scale. This type of scale-invariant behaviour does 
not spontaneously emerge in nature, but must reflect an underlying dynamical (evolution-
ary) process (Bak et al., 1988).

Taxonomic content
As the number of bacterial WGS increases to over 330,000 in public databases, the emerg-
ing genotypic diversity is challenging traditional taxonomic hierarchical structures and 

Figure 4.1 The cumulative rate of discovery of ‘new genes’ as a function of the number of  
(a) 866 Salmonella isolates, (b) E coli genotypes from 3348 representing 334 genotypes, and 
(c) 15,158 Campylobacter isolates. All increase as a power law (linear on a log-log plot) defined 
by Equations 4.1–4.3.

(a)

(b)

(c)
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concepts of evolution (Al-Saari et al., 2015). Classification and naming of organisms with 
traditional methods is becoming problematic, as the addition of a single new genome 
drives continual revision of reference phylogenetic trees. For example, recently discovered 
cryptic environmental lineages of E. coli do not fit with current multi-locus sequence typing 
(MLST) classification for E. coli sensu stricto (Walk et al., 2009). WGS analysis with a single 
gene, such as 16s rRNA, provides one name, but whole genome alignment provides a mix-
ture of names where portions of the genome align to more than one genome, demonstrating 
genome plasticity, widespread homology among gene groups, and possible horizontal gene 
transfer at a much higher frequency that previously observed.

A similar conclusion was hinted at in a comparative study of lactic acid bacteria that led to 
the re-alignment of two entire genera (Makarova et al., 2006). As the number of WGS data 
continues to grow at an unprecedented rate, conventional methods to classify organisms 
using genomics may not meet the standard of absolute identification based on phenotype. 
Whole genome comparison methods now available circumvent the assumptions currently 
used to define a constant or static set of single genes, SNPs, or even core sets of genes. Whole 
genome comparison eliminates the need for data reduction and avoids the associated skew-
ing of taxonomical classification. Although there is a regulatory need to classify and name 
organisms, the data suggest that classification of bacteria, based on whole genomes, should 
be considered more akin to the classification of virus in terms of quasispecies, as discussed 
below. Methods that identify new organisms from metagenome sequence are emerging, 
making it impossible to use phenotypic characteristics as there is no pure culture (Parks 
et al., 2017). These advances are begging for new methods to classify organisms based on 
genotype.

To illustrate how whole genome data challenge traditional taxonomy, it is informative 
to carry out whole genome comparison at different scales. Fig. 4.2 is an analysis of three 
independent Campylobacter datasets.

Principal component analysis ( Jolliffe, 2002) based on a whole genome–genome differ-
ence matrix reveals similar clusters of Campylobacter genomes (Weimer, 2012; Weis, 2016). 
When using only 90 genomes from a study of primates and crows (Fig. 4.2a), three tight 
clusters appear in the PCA biplot; this result aligns well with classic phylogenetic classifica-
tion and nomenclature and is congruent with a small sampling of the genome space based 
on only a few genomes. Using 218 genomes from the Ensembl database (Fig. 4.2b), the 
clusters for the three species in Fig. 4.2a enlarge and overlap substantially, demonstrating 
the increased genome diversity for an increase of approximately two times more genomes 
in the analysis. With 715 genomes from the NCBI SRA (Fig. 4.2c) with the same principal 
component analysis, the Campylobacter genome diversity becomes even more apparent. 
Taken together, these data demonstrate a rapid expansion of genotypic diversity within spe-
cies, and of diversification, that overlaps species in same genome space. The whole genome 
analysis reveals how a relatively small increase in the number of genomes can rapidly expand 
genome space and blur the concept of species as well as traditional classification structures.

This expansion of genome space reflects the increasing genome diversity that occurs as 
more genomes are added to an analysis. Expansion of the diversity is especially evident when 
samples originate from a large collection of organisms from different geographical locations 
that may be insular regions of diversity (MacArthur and Wilson, 1963; Weis, 2016). The 
expansion and overlap in Fig. 4.2 also implies that traditional naming conventions are inac-
curate and lead to false identification based on artefacts that emerge when using a small set 



Kaufman et al.52 |

Figure 4.2 Principal component analyses of genome–genome distance from Campylobacter
genomes representing (a) 90 genomes from primates and crows (Weis, 2016), (b) 218 genomes 
from the Ensembl reference database, and (c) 715 genomes from the NCBI SRA. In all three 
fi gures the x-axis is principal component 1 and the y-axis is principal component 2. The colour 
code in the legend indicates the original source species identifi cation. With increasing dataset 
size, the clades representing traditional views of phylogeny for species begin to expand and 
overlap.

(a)

(b)

(c)
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of input genes, MLST markers, or SNPs. These approaches were useful when computation 
and data were a limiting factor; however, with more genomes and cloud computing, data 
reduction methods are not needed and lead to inaccurate or even misleading classification 
compared with the use of whole genomes and whole genome distance.

Another way to visualize taxonomic grouping is to render a heat map of the full genome–
genome distance matrix. The head map is shown in Fig. 4.3, which represents all pairwise 
distances between Campylobacter whole genomes.

With 90 genomes (Fig. 4.3a) the regions of greatest similarity are found along the matrix 
diagonal. With 218 and 715 genomes (Fig. 4.3b and c, respectively), highly similar but 
divergent subsets of genomes emerge with increasing numbers of genomes. These appear 

Figure 4.3 Heat maps showing the genome–genome similarity matrix derived from three 
Campylobacter databases containing (a) 90 genomes, (b) 218 genomes, and (c) 715 genomes.

(a)

(b)

(c)
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as regions of similarity for well-separated (off -diagonal) genome pairs, indicating similarity 
between divergent branches of the taxonomic graph. Th is off -axis similarity refl ects pro-
cesses such as horizontal gene transfer that can result in distantly related organisms sharing 
similar or identical genes.

When 715 genomes were compared (Fig. 4.3c), the matrix reveals regions of genetic 
similarity for even more distant taxa, indicating gene transfer between diff erent species.

Analogous behaviour is observed in divergent branches of E. coli and Salmonella enterica
as evidenced by FDA microarray data, fi rst reported by a number of other studies (Elkins et 
al., 2013; Jackson et al., 2011; Patel et al., 2016).

Whole genome microarray hybridization using 1094 E. coli genomes from the FDA 
E. coli Identifi cation (ECID) microarray (Fig. 4.4a) (Patel et al., 2016) and 600 S. enterica
profi led on a S. enterica–E. coli (SEEC) multispecies microarray (Fig. 4.4b) (Elkins et al., 
2013) reveal similar fi ndings to the in silico analysis.

Th e majority of E. coli and Salmonella profi led by this method were amalgamated from 
clinical, foodborne, and associated environmental strains with relevance to public health 
and food safety with strains from private, academic, and publicly available collections. 
Th e microarray profi ling program was developed by the FDA for track-and-trace molecu-
lar epidemiology (Elkins et al., 2013). It was born out of an unconventional application 
towards genomic profi ling from its original utility as a gene expression tool. Th is is primarily 
because forensic strain-level att ribution became possible from the signifi cant intraspecies 
genome plasticities observed in the resulting profi les ( Jackson et al., 2011). In aggregate, 
whole genome analyses reveal that individual species and strains could diff er on the order 
of megabases using the entire genome. Th is amount of genomic variation raises questions 
about how to implement genome-based methods hierarchical classifi cation methods, and 
points to a quasispecies approach for microbial forensics.

Shapiro et al. (2012) att ributed this diversity expansion to horizontal gene transfer 
whereas Doolitt le (1999) prophetically described gene sharing beyond what was thought 

Figure 4.4 Heat maps of genome–genome similarity (Pearson correlations) of pangenome 
gene (allele) presence measured with custom-designed Aff ymetrix microarray platforms. 
(a) Hybridization intensities for 1094 E. coli genomes; (b) hybridization intensities for 600 
S. enterica genomes.

(a) (b)
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possible. Subsequently, many studies have established that bacteria engage in extensive hori-
zontal gene transfer (Doolittle, 1999; Doolittle and Brunet, 2016; Hug et al., 2016; Woese, 
2004). Horizontal gene transfer suggests that ‘the tree of life’ is not a simple tree (Hug et al., 
2016), but rather a complex web of genes that have uneven movement between organisms. 
The diversity apparent in Figs 4.1–4.4 suggests that bacterial life is organized in a highly 
interconnected network, a graph containing edges that connect phylogenetic quasispecies 
across varying genetic distances or scales.

The quasispecies model
Each of the thousands of public genomes analysed was extracted from some microbiome 
in which organisms existed in a web of organism interdependence. The communities were 
different, and the organisms and genes (or metagenomes) that existed depended on local 
conditions. In many cases, the local environment was defined by a macroscopic animal host. 
As such one might expect scaling behaviour observed in macro-ecologies to extend down 
to their microbiomes.

Our experiments reveal a power law scaling of the number of new genes versus the number 
of samples or genomes studied. Mathematically, this relationship rules out the existence of 
a core genome. As new genomes are studied, variations are eventually found for every gene. 
Some of these variants may represent slight modifications in genotype (single nonsynony-
mous mutations). Others represent entirely new phenotypes. We derive a scaling law below 
that relates the exponent measured here to the MacArthur and Wilson exponent, z. Our 
analyses of public genomes reveal a common exponent for closely related bacteria (Salmo-
nella and E. coli) and a slightly larger exponent for a distant organism (Campylobacter) with 
a higher mutation rate and a smaller genome. All values of z are in agreement with the range 
observed by Wilson and MacArthur. This scaling behaviour reveals diversity that emerges 
from examining over 15,000 public samples. Experimental analysis of 40 metagenomic 
samples confirms large-scale genotypic diversity of Campylobacter in a single microbiome.

The scaling behaviour empirically observed requires us to rethink the system of clas-
sification used to define species. Eigen and Schuster suggest that a ‘cloud’ of diverse but 
related organisms within a population are more accurately represented as quasispecies with 
a distribution of genomes and a distribution of genes (Eigen and Schuster, 1977, 2012). 
This concept is commonly invoked in virology but data demonstrating its applications to 
bacterial evolution have been limited (Allard, 2015; Jolley et al., 2004). Available genome 
sequences are just now reaching a critical mass required to make the observations demon-
strated here (Allard, 2015; Leinonen et al., 2010; Tateno et al., 2002; Wu et al., 2009).

The public genomes analysed here were submitted to the SRA by multiple researchers 
performing a wide variety of independent studies. In these studies, samples were derived 
using laboratory procedures where each pathogen was studied as a single genotype, reflecting 
a traditional view of phylogeny where organisms are cultured, isolated, and sequenced from 
single colonies. In fact, organisms exist in genomically diverse populations or communities 
of related, but not identical genotypes – even within a colony. These communities evolve 
rapidly under selective pressure by a number of mechanisms including horizontal gene 
transfer, methylation, and plasmid content. Culture organisms for sequencing as reference 
genomes are recognized as the average genome of a colony, in contrast to an oversimplified 
model of clonal outbreaks. In fact, these organisms exist in highly diverse populations of 
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related genotypes that reproduce with high mutation rates including point mutations, larger 
scale insertions and deletions, and gene transfer. Shapiro et al. (2012) reported ecologically 
driven differentiation of genes in recently diverged populations of ocean bacteria. Although 
the number of samples in their study was not large enough to observe scale invariance, it 
demonstrates the rapidity with which gene transfer can occur across multiple related strains 
in response to environmental pressures: ‘genomic fragments can sweep through populations 
in an ecology-specific manner … with a clear bias towards within-habitat sharing of DNA’ 
(Shapiro et al., 2012).

The theory of quasispecies postulates an evolutionarily optimized mutation rate, which 
increases in response to stress. This provides for rapid adaptation including, for example, a 
very high rate of drug escape. Moreover, high recombination and horizontal gene transfer 
rates are known to play an important role in increasing both the adaptation rate and genetic 
diversity. Bacterial populations are known to exhibit high intrinsic mutation and recombina-
tion rates, throughout the course of an infection (Suerbaum and Josenhans, 2007) and/or 
during the acute phase of infection (Linz et al., 2014). Increased mutation rates in bacteria 
are also apparent during selection pressure, either by natural predators (Weitz et al., 2005) 
or through expression of alternative error-prone mutator genes (Ebrahimi-Rad et al., 2003). 
Several Campylobacter strains are known to show increased mutation rates (Parkhill et al., 
2000), with instances of C. jejuni and C. coli hypermutator phenotypes linked to the emer-
gence of ciproxin resistance.

The quasispecies model provides a framework to understand fitness and evolvability of 
a population ( Jones et al., 2015; Stern et al., 2014; Xiao et al., 2016). Fitness is determined 
not by the genetic characteristic of a single, isolated, static species or gene, but by the collec-
tive distribution of the members of the quasispecies whose clonal expansion reflects their 
underlying genotypic diversity and their fitness with respect to a particular environment or 
selection pressure including antibiotics, other medications, and treatments (Hu and Zhu, 
2016; Qin et al., 2010). The model that a particular pathogen associated with an epidemic 
or outbreak is accurately represented as a single species (e.g. a microbe’s name using 16s 
sequencing) with a clonal identity is not only inadequate but also fallacious: it ignores the 
underlying genotypic diversity.

Metagenomic techniques make it possible to profile the genetic diversity of a quasi-
species within a microbiome. We used RNAseq to study the metatranscriptome of the 
microbial community of 27 different poultry meal samples. Combining data from all samples 
provides ≈9.5B reads of raw sequence. Although metagenomics is often used to profile the 
community ecology, we used the data here to profile the genotypic diversity of one organ-
ism in the community, Campylobacter. These reads were aligned to the 218 Campylobacter 
genomes from the Ensembl database and the alignments tallied for each genome at 95% 
identity. This reference database is larger than is typically used to identity a single species 
in a metagenomic study, but small enough to illustrate two alternative views of what that 
identification means.

A classic analysis might treat the 218 average genomes in the reference database as inde-
pendent genotypes, or clonal leaf nodes, on the tree of life. Using this model, if any of these 
genotypes were present in the community of the poultry meal, it would be possible to set a 
strict threshold and ignore any evidence of occurrence in the sample below that threshold.

An alternative analysis with a different perspective might treat the 218 genomes in the 
reference database as approximate, historic, average observations of genotypic distributions 
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from 218 ecological niches. Alignments to this reference provide a measure of the probabil-
ity with which genotypes in the Campylobacter quasispecies in the poultry meal are similar 
to those historic genotypes. Genotypes with several thousands of alignments may refl ect 
minority alleles within the community.

Fig. 4.5 shows a circle plot mapping the log-normalized alignments from our metagen-
omic study of poultry meal to 218 Campylobacter reference genomes.

Th e log-normalization highlights the genotypic diversity refl ected by both the reference 
database and the sample. In this view, it is still possible within the circle plot to label specifi c 
genotypes with alignment scores above a fi xed threshold, but displaying the alignments 
to the full reference database reveals that there is, in fact, a distribution of closely related 
genotypes within the sample.

As WGS and metagenomics gain acceptance in fi elds like microbiome medicine, out-
break defi nition, and food safety traceability, where the demands for accuracy and precision 
are very high, what really matt ers is function because it is genes that drive the epidemiol-
ogy. As shown in Fig. 4.1, hundreds of samples and tens of thousands of individual genes 
are required to reveal scaling behaviour and/or to estimate a power law exponent. To do 
this accurately requires inclusive and expansive reference databases. If too few references 

Figure 4.5 A circle plot showing the mapping of all log-normalized read alignments from a 
metagenomic study of poultry meal to 218 Campylobacter genomes in the curated Ensembl 
database. Each circle represents one specifi c genome in the reference. The area of each circle 
is the log of the number of sequence reads that matched that genome. The arrangement of 
the small circles is arbitrary. The dominant Campylobacter species are indicated in the legend.
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are in the database, inaccurate associations may be made leading to inappropriate att ribu-
tion of cause and eff ect. Th ese alignments reveal the genetic diversity of the Campylobacter
quasispecies within the chicken meal microbiome based on the 218 curated genomes in 
Ensembl (Hubbard et al., 2002).

Another approach to measuring diversity is to quantify the allelic variation observed in 
all reads that align to Campylobacter. To do this we enumerate all specifi c SNP variants and 
plot the frequency with which these occur (Fig. 4.6).

A particular Campylobacter SNP variant (where the nucleotide diff ers from the refer-
ence) that is found only once at a particular location is the most frequent event in the graph. 
Other variants, where the same substitution is found up to tens of thousands of times at a 
particular location, are found infrequently. Th e unique SNP variants were enumerated for all 
218 genomes in the reference. Th e frequency of occurrence for the number of unique SNP 
variants is approximately a power law with slope near −1 (i.e. 1/f).

We note that the evidence for scale invariance down to the level of single SNPs does not 
prove that all nucleotides within a genome are replaced with the same frequency or with the 
same scale-free behavior. Rather, the highest rate of substitution is typically observed near 
the 3′-ends of a gene. Substitutions near the 3′-ends are less likely to disrupt function, and 
more likely to survive (by natural selection).

Insular microbiogeography: an emerging concept for 
microbiology
Th e MacArthur–Wilson theory of island biogeography purports that there is an underlying 
power law relationship between species and habitat on a macroscopic level. Our experimental 

Figure 4.6 The occurrence frequency of unique Campylobacter genome SNP variants within 
a metaRNAseq study of a poultry meal. The function is approximately a power law with slope 
near −1.

ZN
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results lead us to posit that the power law exponent that MacArthur and Wilson measured 
for macroscopic life also applies to microbial life. This is, by definition, scale-free behaviour 
and leads to some ‘laws’ that microbes live by to produce genomic variations that we can use 
as tools for many applications:

• Each host provides a unique environment for community of microorganisms. These 
microorganisms adapt to their environments.

• Because the distribution of host organisms obeys the MacArthur–Wilson law, so too will 
the genomic diversity of the microbial communities that colonize them.

This follows from the mathematical definition of scale-free behaviour and from ecological 
arguments. Microbial communities are linked by the larger web of hierarchical interdepend-
ence that links their macro-ecological hosts. To test this proposition, it remains to connect 
the exponent observed here to the MacArthur–Wilson exponent (Tang and Bak, 1988). 
The data above show the number of new genes compared with the number of samples or 
genotypes (Fig. 4.1), whereas MacArthur and Wilson’s law relates species or taxa to geo-
graphical area. Moreover, the data here come primarily from sources originating from human 
patients and, if the human hosts are interpreted as a single niche, there may seem to be no 
reason to expect scaling behaviour or any diversity within the genotypic clades. Contrary 
to this expectation, we find the data indicate a possibly universal power law relationship as 
a function of number of genomes. In fact, medical sequencing of pathogens is indicated in 
the event of human disease, typically in unusual cases. As such, these reference sequences 
do not specifically represent steady state populations, but rather originate from consumption 
of contaminated food or water, or exposure to other disease vectors. Given a global food 
supply chain and global travel patterns, the simplest interpretation of the data is that these 
genomes represent a near random sampling of foodborne pathogens globally. Humans are 
engaged in this random sampling as part of everyday consumption. With random sampling, 
the number of isolates (or genotypes), η, in Fig. 4.3 is related to area, A, as a random walk 
through sample space. Formally, this implies a functional relationship between area and the 
number of genomes as A ≈ η1/2. The MacArthur–Wilson exponent, z, is then one-half the 
exponent obtained in Fig. 4.1 or:

N ∝ η2z (4.4)

For all organisms studied here, the data put the corresponding MacArthur–Wilson expo-
nent in the range 0.23 < z < 0.32, well within the range observed for species-area scaling in 
the theory of island biogeography.

Equation 4.4 and the data in Fig. 4.1 indicate that as the number of genomes studied 
increases, the cumulative number of genes observed will continue to increase. The more 
genomes included in an analysis, the more genes will be discovered ( Jacobsen et al., 2011). 
Although our three experiments involved tens of thousands of genomes, none provided 
evidence for an upper limit to the rate of gene discovery. Such a limit would manifest as a 
‘knee’ or bend on the log-log plots above some maximum of genomes. For example, in Fig. 
4.1c, with 15,158 genomes and 1000 jackknife trials, the study spans a scale exceeding four 
orders of magnitude with no upper scaling limit found. These observations in three different 
organisms indicates that a core genome does not likely exist and that as more genomes are 
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deposited the size of genome space will increase with no practical upper limit – therefore no 
boundary between species but rather a gradient of change from one to another.

The data in Fig. 4.1a–c reveal that the more genomes we sequence, the more genes will be 
discovered. For any taxonomic group, at the measured rate of gene discovery, the question 
becomes, ‘How many samples would be required before an alternative gene is discovered for 
every gene in any randomly selected genome?’

The answer to this question is a special case of the ‘coupon collector’s problem’ (Blom et 
al., 2012). If we assume that non-synonymous mutations are possible for any gene, then the 
question becomes, after finding N new genes at random from a genome of length No, at what 
value of N does the probability of not finding an alternative gene for every gene in the original 
genome become vanishingly small.

Let Ζ i
NΖ i

r represent the event that the i-th gene is not replaced after N new genes are 
found. Then, i is r :

P Ζ i
N( )= 1− 1

No

⎛
⎝⎜

⎞
⎠⎟

N

≤ e
−N No  (4.5)

where the inequality follows from the Taylor expansion of e–x for small x.
For N > 2 No ln(No):

P N    2  No  ln No   P i i
2  No   ln No NoP i

2No   ln No
1
No

 (4.6)

Therefore, the probability of not finding an alternative to every gene falls below 1/No for 
N > 2 No ln(No). For Campylobacter, with No ≈ 1500 genes, this requires finding N ≈ 22,000 
new genes. From Fig. 4.1 this will take place after randomly sampling just a few hundred 
isolates. For Salmonella, a variant to each of No ≈4500 genes will be found after discovering 
≈76,000 genes, which requires approximately 2000 isolates. However, this was not the case 
and the logical conclusion is that a unique core genome does not exist (DeLong et al., 2010; 
Green et al., 2004; Horner-Devine et al., 2004).

Implications for microbiology
The evidence for scaling over several orders of magnitude in sample diversity of micro-
bial genotypes and genomes has practical implications for microbiology and the way we 
catalogue organisms and investigate outbreaks. Approaches that depend on data reduction 
or definition of a core genome, selection of small numbers of SNPs, or of core MLST 
gene sets, are destined to fail with false negatives as they do not capture the expansive 
genome diversity that is unavoidable. The fact that adding one more genotype to the set 
can indicate a need to rebuild the taxonomy shows that we have not adequately sampled 
the genomic space and that the tree of life for bacteria is not a tree – it is a network (or 
graph) of interacting genomes within an environment or geography (Al-Saari et al., 2015; 
Makarova et al., 2006; Walk et al., 2009), with loops that indicate gene transfer between 
divergent taxa.

As in virology, it is more appropriate to think of bacteria in terms of quasispecies with a 
distribution of genotypes and genes that evolve, move, and shift in genome space in response 
to a changing fitness landscape. The tools required for whole genome comparison using 
the entire genome exist and must be applied to capture genetic similarity between both 
nearby and distant genotypes. This is necessary for accurate identification and functional 
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association required by applications in microbiome-induced physiology, outbreak detec-
tion, and food regulation. Adopting whole genome comparison may force microbiology to 
replace the practice of naming and even the concepts of ‘genus’ and ‘species’ with new data 
models and notations that label populations by their function and the niche(s) they occupy. 
From a regulatory and health perspective, it is most important to know if an organism has a 
pathogenic gene that may cause illness (regardless of its taxonomic classification).

There are several dimensions one might consider for a new nomenclature system. New 
notations could capture the diversity or statistical distributions that describe the frequency 
with which important function exists within a community. Community level techniques 
including metagenomics and meta-transcriptomics can be used to predict the probability 
that specific genes are (or are not) present in a community and the likelihood with which 
they may emerge as hazards in response to fitness pressures.

Conclusions: gene discovery and power law scaling
The discovery rate of new genes depends on number of genomes sequenced as a power law. 
If this scaling behaviour arises from the hierarchical web of species interdependence, one 
should expect the MacArthur–Wilson theory of insular biogeography to apply to microbes. 
MacArthur–Wilson never derived or explained the power law behaviour they discovered. 
That explanation comes from the more general theory of self-organized criticality (Bak et 
al., 1988). The power law reflects the complexity of the underlying food web that connects 
the macroscopic and microscopic species with their chemical environment. Observation 
of the same scale-invariant behaviour for microbes and higher order life suggests this food 
web evolves towards a critical state with fluctuations expected on all scales. To test this 
proposition, we derive a scaling relation relating the observed exponent to the MacArthur–
Wilson exponent, assuming that genome datasets in public repositories represent a near 
random sampling from the global genome space. The values obtained are consistent with 
theory. Species require niches to survive and thrive. With respect to microbes these niches 
are not restricted to the physical and chemical properties of insular environments (which 
themselves evolve a characteristic fractal geometry) but also include other species. It is the 
interacting web of ecological dependence between species that leads to self-organization, 
evolution of a scale-free diversity of life forms across scales within isolated ecosystems. The 
host organisms are linked to their microbiomes. They provide unique habitats for the com-
munities of microbes that colonize them.

The diversity predicted by a theory of insular microbiogeography requires we rethink 
our approach to organism classification and regulation. Bacteria form quasispecies related 
by an slowly evolving phylogenetic graph – not a tree – that reflects the complex web of 
interdependence spanning all phylogenetic ranks down to the level of microbes. In any open 
ecosystem or open microbiome, the classical concept of core genomes ceases to be mean-
ingful for any class of bacteria. Classification and regulation based on comparison of whole 
genomes and gene function may better capture the genotypic relationships between related 
microorganisms.
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