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Abstract 
After replanting apple (Malus domestica Borkh.) on 
the same site severe growth suppressions, and a 
decline in yield and fruit quality are observed in all 
apple producing areas worldwide. The causes of 
this complex phenomenon, called apple replant 
disease (ARD), are only poorly understood up to 
now which is in part due to inconsistencies in terms 
and methodologies. Therefore we suggest the 
following definition for ARD: ARD describes a 
harmfully disturbed physiological and morphological 
reaction of apple plants to soils that faced 
alterations in their (micro-) biome due to the 
previous apple cultures. The underlying interactions 
likely have multiple causes that extend beyond 
common analytical tools in microbial ecology. They 
are influenced by soil properties, faunal vectors, and 
trophic cascades, with genotype-specific effects on 
plant secondary metabolism, particularly phytoalexin 
biosynthesis. Yet, emerging tools allow to unravel 
the soil and rhizosphere (micro-) biome, to 
characterize alterations of habitat quality, and to 
decipher the plant reactions. Thereby, deep insights 
into the reactions taking place at the root 
rhizosphere interface will be gained. Counteractions 
are suggested, taking into account that culture 
management should emphasize on improving soil 
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microbial and faunal diversity as well as habitat 
quality rather than focus on soil disinfection. 

Introduction 
Apple replant disease (ARD) affects plant 
propagation in nurseries as well as apple production 
worldwide by strongly reducing plant growth as well 
as fruit yield and quality (Mazzola and Manici, 2012; 
Manici et al., 2013). The disease occurs after 
repeated replanting of apple at the same site. On 
ARD soils, over the lifetime of an apple orchard, a 
50 % reduced profitability has been estimated due 
to later and less fruit bearing of the affected trees 
(Mazzola, 1998; Van Schoor et al., 2009). Problems 
by ARD are increasing recently, mainly due to the 
concentration of tree nurseries to certain regions, 
such as the Pinneberg region in Germany or Pistoia 
in Italy, as well as due to the concentration of apple 
orchards in the respective fruit production areas. In 
addition, to achieve higher planting densities, the 
use of dwarf rootstocks results in a shorter life span 
of these orchards and in more frequent replanting 
(St. Laurent et al., 2010; Volk et al., 2015). A rapid 
improvement of this situation is unlikely, as 
installation costs increase (frost protection, 
irrigation) and areas for crop rotation become 
increasingly scarce due to alternative usage for 
industry, energy plants, or other purposes. 

Various definitions of the term "replant disease" or 
related phrases such as "replant problem", "soil 
sickness" or "soil fatigue" exist (e.g. Klaus, 1939; 
Hoestra, 1968; Utkhede, 2006). According to 
Utkhede (2006) "replant problems" include both, 
abiotic and biotic factors which suppress plant 
growth, whereas "replant disease" comprises only 
all biotic factors. "Soil sickness" is used in cases, 
where the causes of the reduced growth are 
unknown or uncertain (Savory, 1966), thus 
excluding nematode damage (Spethmann and Otto, 
2003). Here, we suggest the following definition of 
ARD: ARD describes a harmfully disturbed 
physiological and morphological reaction of apple 
plants to soils that faced alterations in their (micro-) 
biome due to previous apple cultures. 

ARD is characterized by the specificity to the 
species Malus domestica (although cross reactions 
with other Rosaceae have been observed) and a 
persistence for decades (Savory, 1966). ARD is 
reversible after transplanting into virgin or healthy 
soil. Replant disease has also been reported for 
other plants, and especially members of the 
Rosaceae, such as cherry, peach, strawberry, 

rowan, and rose, are prone to it. In this review, we 
summarize current knowledge on the causes of 
ARD and critically evaluate current lines of research 
to develop mitigation strategies. 

Etiology and causes of ARD 
The species specificity implies that ARD has its 
origin in the apple plant-soil interface: Based on root 
exudates (Börner, 1959; Wittenmayer and Szabó, 
2000 ; Ho fmann e t a l . , 2009) o r /and by 
decomposition products of dead apple plant material 
changes in the biomes of the rhizosphere and of the 
soil are induced. A recent study addressed the 
composition of root deposits, thus analyzing the 
important root soil interface, of different apple 
rootstocks for the first time (Leisso et al., 2017). The 
rhizodeposits were found to be highly dynamic and 
influenced by growth conditions, rootstock genotype 
and bacterial communities of the rhizosphere. Also 
intraspecific allelopathy cannot be excluded in this 
context, but the persistence of ARD over decades 
would suggest that the involved toxic or deleterious 
substances are extraordinarily stable and bioactive. 
It is well accepted that soils may store or cycle 
certain molecules such as carbohydrates, lipids or 
proteins for years to decades (e.g. Wiesenberg et 
al., 2004; Derrien et al., 2006; Amelung et al., 2008). 
However, this has not been proven for root 
exudates, as usually these molecules are quickly 
transformed by rhizomicrobial respiration before 
being adsorbed or bound to soil minerals, which 
would make them inert against microbial 
degradation (e.g. Oades, 1988; Kuzyakov and 
Larionova, 2005; von Lützow et al., 2006; Kögel-
Knabner and Amelung, 2014). If they do get bound, 
then it is questionable whether such compounds 
real ly maintain their bioavai labi l i ty. From 
experiments with pollutants like polycyclic aromatic 
hydrocarbons, pesticides, or antibiotics, we know 
that with increasing contact time, newly added 
compounds become sequestered, thus rapidly 
losing their desorbability, bioavailability, and 
potential effectiveness on soil microbes (e.g. 
Hatzinger and Alexander, 1995; Lueking et al., 
2000; Ciglasch et al., 2008; Rosendahl et al., 2012). 
It therefore appears truly unlikely that toxic 
compounds can explain ARD persistence for years. 
However, they may still trigger initial shifts in 
microbiome composition. 

Shifts in bacterial and fungal communities in soil as 
a trigger for ARD development  
Previous studies allow the conclusion that ARD is 
assumed to be a disease-complex (Figure 1) which 
is influenced by the soil type and the climate of the 
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respective site. The fact that soil disinfection leads 
to the restored regular plant growth clearly points to 
biotic causal factors (e.g. Mai and Abawi, 1981; 
Mazzola, 1998; Yim et al., 2013; Spath et al., 2015). 
In earlier studies on ARD soil microorganisms, 
various genera differing in dominance between sites 
were suggested to be involved in the disease 
complex. These are the oomycetes Pythium and 
Phytophthora, the fungi Cylindrocarpon and 
Rhizoctonia as well as actinomycetes and other 
bacterial genera like Bacillus and Pseudomonas 
(Jaffee et al., 1982; Otto et al., 1994; Mazzola, 
1998; Utkhede, 2006; Tewoldemedhin et al., 2011). 
Also evidence for an involvement of root endophytic 
fungi (e.g. Cylindrocarpon-like fungi) in apple plant 
growth reduction on ARD affected soils was 
presented (Manici et al., 2013, 2018). More recently, 
numerous studies on microbial community analyses 

of ARD soils were published, strongly fostered by 
new sequencing technologies (Rumberger et al., 
2007; Tewoldemedhin et al., 2011; Yim et al., 2013, 
2015, 2016; Sun et al., 2014; Caputo et al., 2015; 
Franke-Whittle et al., 2015; Mazzola et al., 2015; 
Hewavitharana and Mazzola, 2016; Nicola et al., 
2017). These total DNA based analyses confirmed 
previous data on changes in the microbial 
community composition in replant soils. Obviously, 
the soil-inherent microbial diversity, the plant 
species, and the plant growth stage influence the 
microbiome in the rhizosphere of apple plants. 
Differences are observed in the bacterial and fungal 
community composition in ARD affected and in 
healthy soils from the same site (e.g. Franke-Whittle 
et al., 2015). However, up to now it is unclear, 
whether the missing or additional microorganisms 
as well as shifts in abundances caused ARD or 

!91

Fig. 1 

  

  35

Figure 1. Apple replant disease (ARD) has multiple causes with a strong impact of dysbiosis regarding the microbiome and is influenced by soil properties, 
faunal vectors, and trophic cascades, with genotype-specific reactions.
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occurred as a result of ARD. The analysis of 
amplicon sequencing data of microorganisms in 
ARD soil after treatment with heat, gamma 
irradiation, Basamid® or biofumigation revealed 
numerous bacterial and fungal populations with 
significantly increased abundance (responders) 
compared to that in untreated ARD soil. Although 
the 16S rRNA gene and ITS sequence data need a 
careful interpretation, notably, many of the 
responders belonged to taxa of which strains with 
plant beneficial traits or antagonistic activity were 
described, such as Burkholderia ssp., Arthrobacter 
ssp., Podospora ssp. or Penicillium ssp. (Franke-
Whittle et al., 2015; Mazzola et al., 2015; Yim et al., 
2016, 2017). However, the analysis of diversity 
revealed on the base of 16S rRNA gene fragments 
or ITS fragments amplified from DNA directly 
extracted from soil (total community DNA - TC-DNA) 
is limited in its resolution down to the genus or 
species level depending on the used primer 
systems. But, for many species which colonize the 
rhizosphere, it is well known that traits differ on a 
strain specific level and bacteria of the same 
species can act as phytopathogens or plant growth 
promoting bacteria. Even the same strain can 
change the gene expression pattern depending on 
its environment and thus develops different 
interaction patterns with plant roots. Thus, analyses 
of the functions and the expression pattern of genes 
of interest provided by the below-ground 
microbiome are needed to improve our mechanistic 
understanding on the role of microbes in ARD 
development.  

In upcoming studies oomycetes need to be included 
in the analysis by molecular tools as the primers 
targeting fungal ITS do not amplify oomycetes and 
thus these data are still missing. Furthermore, qPCR 
systems need to be established to determine the 
changes in abundance of potential harmful or 
beneficial microorganisms in the apple rhizosphere 
microbiome in response to different soil management 
treatments. 

Soil fauna affecting ARD 
Besides nematodes (see below), important soil 
mesofauna groups are Collembolans and soil mites, 
which play an important role in soil food webs as 
decomposers, plant parasites, microbivores as well 
as predators (Hopkin, 1997; Wardle, 2006, 2013; 
Walter and Proctor, 2013). Both groups of 
organisms are neither discussed in the context of 
causing agents nor considered at all in the current 
ARD literature (Utkhede, 2006; Mazzola and Manici, 
2012; Vukicevich et al., 2016). Nevertheless, there 

is much evidence in the literature that soil 
mesofauna affects not only bacterial and fungal 
communities in the rhizosphere, i.e. by selective 
feeding on pathogenic or non-pathogenic 
microorganisms (Lartey et al., 1994; Sabatini and 
Innocenti, 2000, 2001; Innocenti et al., 2009; 
Böllmann et al., 2010), but also promotes 
mycorrhizal fungi (Steinaker and Wilson, 2008; 
Kanters et al., 2015) and other beneficial 
microorganisms (Lartey et al., 1994). Having in mind 
that Collembolans and soil mites are also strongly 
affected by land management (fertilizer, water, soil 
structure) (Schrader et al., 1997; Larsen et al., 
2004; Innocenti et al., 2011; Roy et al., 2014) and 
pesticide use (Frampton, 2002; San Miguel et al., 
2008; Chelinho et al., 2014), it would not be 
surprising that cascading trophic effects driven by 
consumers either directly or indirectly influence the 
etiology of ARD. So far, own results indicate 
decreased abundance of Collembola and soil mites, 
as well as shifts in Collembolan species composition 
in ARD compared to healthy soils (Meyhöfer et al., 
unpublished data). 

Many studies suggested a role of root lesion 
nematodes in the ARD development (Hoestra and 
Oostenbrink, 1962; Dunn and Mai, 1972; Mai and 
Abawi, 1981; Jaffee et al., 1982) citing notably 
uneven distribution pattern of Pratylenchus 
penetrans in apple orchards (Mai and Abawi, 1978; 
Jaffee et al., 1982; Mai et al., 1994). Yim et al. 
(2013) inactivated nematodes in ARD affected soils 
by heat treatment and could prove that apple plants 
grew significantly better in heat-treated ARD soil 
compared to the untreated ARD soil, confirming the 
role of nematodes in ARD development. However, 
nematicide applications in affected orchards were 
inefficient to enhance apple growth (Hoestra and 
Oostenbrink, 1962; Covey Jr et al., 1979; Caruso et 
al., 1989; Mazzola, 1998). Furthermore, the low 
frequency of endoparasitic nematodes in roots did 
not give evidence for a contribution to growth 
reduction in apple in ARD affected soils (Manici et 
al., 2013). Nevertheless, root lesions induced by 
nematodes can cause synergistic damage to apple 
by acting in combination with some notable 
pathogenic fungi or oomycetes such as Rhizoctonia, 
Phytophthora, Cylindrocarpon, and Pythium 
(Mazzola, 1998). Furthermore, a high abundance of 
nematodes feeding on microbes can modify the 
microbial community by altering the relative 
abundance of populations (Djigal et al., 2004; Hai-
Feng et al., 2014; Gebremikael et al., 2016) thus 
causing a significant reduction of microbes that 
induce plant growth promotion. Indirectly, 
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nematodes m igh t con t r i bu te to ARD by 
dissemination of microbes (Freckman, 1988; Wang 
and McSorley, 2005) or activation of specific 
microbial growth by the release of growth limiting 
nutrients (Wang and McSorley, 2005). Recent 
findings by Adam et al. (2014) and Elhady et al. 
(2017) confirm specific bacteria and fungi to be 
attached to infective stages of Meloidogyne 
incognita and P. penetrans in different soil types 
indicating an ecological role of the association. Four 
way interaction between fungi, oomycetes, bacteria 
and nematodes was supposed to increase the ARD 
severity when these organisms were present at the 
same time (Utkhede et al., 1992; Mazzola and 
Mullinix, 2005).  

Soil properties affecting ARD 
Soil properties might modulate the degree of ARD 
observed in plants, if not even causally affecting it 
(von Bronsart, 1949). In general, sandy/light soils 
have often been observed to be more prone to ARD 
than loamy soils (http://www.leicesters.co.nz/
specific-apple-replant-disease/). Own observations 
addit ional ly conf i rm that areas with high 
groundwater levels or extended periods of water 
logging are less conducive for ARD most likely due 
to interfering with the development of pathogenic 
aerobic communities. 

Von Bronsart (1949) stated that physical soil 
conditions like compaction, loss of specific pore 
sizes, dryness in macropores or stagnant water 
conditions above a compacted plough pan, may 
hardly be seen as major cause of ARD, because the 
latter is plant-specific while most soil-related effects 
are not. Nevertheless, physical soil conditions may 
drive the survival and competit iveness of 
phytopathogenic or beneficial nematodes and also 
of microbial communities, i.e., they might affect the 
intensity and duration of ARD symptoms. And 
indeed, ARD has often been observed to occur 
heterogeneously at a given site, as do many soil 
properties (Bogena et al., 2010; Gebbers and 
Adamchuk, 2010; Herbst et al., 2012). Mazzola and 
Manici (2012) concluded that abiotic factors may 
exacerbate ARD but do not appear to function as 
the primary cause of the disease. 

Among chemical soil properties influencing ARD 
severity, pH is certainly a master variable affecting 
nutrient availability, microbial diversity and microbial 
nutrient mobilization and immobilization. Some 
authors reported that in soils with low pH values 
(around 4-4.5) ARD problems are less pronounced 
(Jonkers et al., 1980; Utkhede, 2006), while others 

reported that low pH values make soils prone to 
replant disease problems (Willet et al., 1994). 
Additionally, the role of pH on ARD severity is 
obviously genotype dependent (Fazio et al., 2012). 

With variations in pH, nutrient availability changes, 
and there has been focus on micronutrient controls 
on ARD expression, mainly related to Zn, Fe, and 
Mo (von Bronsart, 1949; Fan et al., 2010; Fazio et 
al., 2012). To avoid additional nutrient limitations, 
apple replanting should consider respective fertilizer 
recommendations. These may include, for instance, 
the use of selected micronutrients such as zinc 
while possibly excluding or at least very carefully 
operating with others like boron (Tukey et al., 1984). 
Adding mineral fertilizer, e.g., with P, (Sewell et al., 
1988), as well as managing ground cover by adding 
compost or even biochar, may induce increased 
biocontrol properties of soils including a reduction of 
nematodes causing root lesions. Fertilization may 
thus affect ARD severity in nutrient-limited soils (van 
Schoor et al., 2009), but frequently failed to replace 
fumigation for replanting in temperate climates (St. 
Laurent et al., 2008; Mazzola and Manici, 2012; 
Glisczynski et al., 2016; Peruzzi et al., 2017). 

To future study the role of soil in modulating the 
degree of ARD in plants, it will be inevitable to map 
spatial ARD heterogeneity in different orchards and 
to correlate it with spatial patterns of soil properties 
that likely also include subsoil properties. The 
finding of causal interactions between soil properties 
and ARD, however, is often hampered by insecurity 
related to sampling rhizosphere soil. Rhizosphere 
soil is commonly obtained by a vigorous shaking of 
the uprooted root system. This enables neither to 
differentiate between affected and non-affected root 
areas, nor to define precisely the distance from the 
root surface. As in general less material is obtained 
from affected roots compared to healthy root 
material, a dilution of effects might occur using total 
root sampling approaches. 

Plant reactions to ARD 
The level of susceptibility differs significantly 
between individual apple genotypes. Fully resistant 
genotypes were never observed yet, but less 
susceptible and/or tolerant genotypes can be found 
for different species of the genus Malus (Isutsa and 
Merwin, 2000). Symptoms of ARD are expressed 
early after the first contact with ARD affected soil 
and include belowground a root browning and 
blackening, root tip necrosis, reduced number of 
root hairs and destroyed outer root cell layers 
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(Caruso et al., 1989; Yim et al., 2013, Grunewaldt-
Stöcker, unpublished data, Figure 2). 

Aboveground plant parts show stunted or rosette 
growth (Caruso et al., 1989; Mazzola, 1998; 
Mazzola and Manici, 2012; Yim et al., 2013; Atucha 
et al., 2014; Emmett et al., 2014). These severe 
disorders result in a dramatically reduced plant 
biomass, fruit yield, as well as fruit size and flavor 
(Mazzola and Manici, 2012; Liu et al., 2014). The 
molecular and physiological reactions of apple 
p l a n t s t o A R D s o i l s r e s u l t i n g i n t h e s e 
morphologically visible symptoms were only recently 
subject of first in-depth studies. The accumulation of 
phenolic compounds as antioxidants in roots and 
shoots under ARD, points to oxidative stress 
(reactive oxygen species) (Henfrey et al., 2015), 
and may be a consequence of plant damage from 
ARD induced plant secondary metabolites. Changes 
in patterns of phenolic compounds, like phloridzin 
and phloretin, benzoic acid and rutin (Börner, 1959; 
Hofmann et al., 2009; Yin et al., 2016, 2017; Leisso 
et al., 2017) could be the result or reason of ARD. 

The exudation of these compounds may affect the 
complete soil microbiome or parts of it. 

In addition, the abundance of antioxidative 
enzymes, such as peroxidases increased 
significantly four weeks after planting young apple 
rootstocks in ARD affected soil, whereas synthesis 
of these enzymes was lower in plants grown in 
gamma irradiated soil (Schmitz et al., unpublished 
results). Peroxidases oxidize hydrogen donors at 
the expense of peroxides. They are highly specific 
for hydrogen peroxide, but they accept a wide range 
of other hydrogen donors, including polyphenols. 
The higher activity of peroxidase could promote the 
oxidation of phenols into the antioxidative 
polyphenols in the roots (Ayyagari et al., 1996), 
which may lead to the visible browning and 
blackening symptoms as well as root tip necrosis. 

After infection of roots of apple seedlings by 
Pythium ultimum, one of the potential causal agents 
of ARD, an upregulation of the expression of genes 
involved in the secondary metabolism occurred as 
well as differential expression of genes in plant 
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Figure 2. Cell necroses and blackening in the outer tissue layers of a branching fine root (A), and root tip necrosis (B) of apple rootstock Malus domestica 
M26, grown for two weeks in ARD affected soil.
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hormone metabolism (Shin et al., 2014, 2016; Zhu 
et al., 2014). Comparative transcriptomic studies of 
roots of the sensitive rootstock M26 grown either in 
ARD or gamma irradiated ARD soils revealed 
several differences in the expression of genes 
involved in stress responses (Weiß et al., 2017a, b). 
Further, when grown in ARD soil the plants reacted 
with an upregulation of expression of genes of the 
secondary metabolism, especially concerning the 
phytoalexin biosynthesis. Also, the corresponding 
phytoa lex in products , i .e . b ipheny ls and 
dibenzofurans were detected in relatively high 
concentrations (Weiß et al., 2017b). A more detailed 
understanding of the molecular interplay of apple 
plants and their microbiome in healthy and ARD 
affected soils is urgently needed to define causes 
and consequences of ARD for plants and microbes 
(Manici et al., 2017). 

The role of spatial distribution of relevant 
parameters 
There are several observations indicating that the 
ARD causing agent, whatever it is, lacks mobility. 
Hoestra (1968) already reported in 1968, that ARD 
affects the apple tree in the first years of planting, 
thereafter the roots grow into deeper soil layers less 
impaired by ARD. He showed in growth experiments 
with soil extracted from different depths that ARD 
was mainly observed in 0-15 and 15-30 cm soil 
depth. As also many soil properties and functions 
are heterogeneous under field conditions (Bogena 
et al., 2010; Gebbers and Adamchuk, 2010; Herbst 
et al., 2012), the patchiness of ARD related growth 
depression in the field as reported above, likewise 
hints in the same direction. Interestingly, ARD is 
induced more rapidly if the site is replanted 
f requent ly (nurser ies) compared to s i tes 
permanently used for apple production. Frequent 
replanting is associated with more frequent mixing 
of soil due to uprooting and soil cultivation. 

Restricted mobility of ARD causing agents, at least 
within the root system was also confirmed in a 
recent split-root experiment (Figure 3) of Lucas et 
al. (unpublished data). Apple plants grown in split-
root systems with different combinations of ARD 
soil, sterilized ARD soil or control soil (same site but 
never planted with apple) gained no reduction in 
shoot growth if half of the root system had access to 
soil not affected by ARD. The spatial separation is 
obviously crucial as simple dilution of the ARD soil 
by sterilized or control soil did not lead to 
comparable results (Hoestra, 1968; Jaffee et al., 
1982; van Schoor et al., 2009; Tewoldemedhin et 
al., 2011; Spath et al., 2015). The split-root 

experiment of Lucas et al. (submitted) clearly 
showed that ARD is not systemic. Bacterial and 
fungal community composition in the rhizoplane and 
rhizosphere of the same plants differed significantly 
between the compartments containing ARD soil and 
those containing sterilized or control soil. However, 
some populations were only detected in the 
sterilized soil if the neighboring compartment 
contained ARD soil. 

Further observations from our group (Zickenrott et 
al., unpublished data) indicate that apple plant roots 
avoid ARD soil patches, if given a choice. The 
mechanisms behind this are currently not known. 

Assessment of mitigation strategies for ARD 
Crop rotation is the first and oldest way to mitigate 
or circumvent ARD (Mazzola and Gu, 2001), but this 
is strongly limited or even not possible due to high 
investments in orchard infrastructure, for instance in 
fences, hail nets, wells, pipes and more technology 
for irrigation. However, the main obstacle is the lack 
of areas for rotation in the production centers. Soil 
fumigation by chemicals is no longer possible in 
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Fig. 3Figure 3. Root growth of Malus domestica M26 in a splitroot experi-
ment. (Photo taken by Maik Lucas).
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many countries due to the phase-out of the 
ecologically harmful fumigants. Biofumigation 
(Brown et al., 1991) using the incorporation of 
Brassicaceae plants or seed meal has been 
suggested as a counteraction and has shown first 
promising results (Mazzola et al., 2001, 2007, 2015; 
Yim et al., 2016, 2017), but cannot fully restore plant 
growth in most cases. The authors could prove that 
the application of Brassica napus seed meal 
amendments resulted in an increased abundance of 
Actinomycetes, e.g. Streptomycetes, and Pseudo-
monas in soil, bacterial groups being known for their 
high contribution to biocontrol of phytopathogens 
(Mazzola et al., 2007). The observed effects of 
applied B. napus seed meal were, however, variable 
and depended on the time of application, the 
concentrat ion appl ied and the content of 
glucosinolates of the meal.  

Further, several studies in the past have 
investigated the impact of fungicides l ike 
difenconazole or metalaxyl on the growth of apple 
trees in soils with replant disease symptoms 
(Mazzola, 1998). Although positive effects were 
obvious the issue of sustainability is questionable as 
a continuous application is needed. Because of the 
small specificity of the compounds other non-target 
populations like beneficial fungi might be affected 
with non-intended side effects. 

Steam disinfection of soils is theoretically possible 
but too energy and time consuming and still fraught 
with technical problems, as demonstrated in current 
experiments in German nurseries. The costs of 
disinfecting soils with steam are 3-4 times higher 
than using chemicals (Nitt et al., 2015). Interestingly, 
the intercropping with Tagetes, conventionally used 
against nematodes, revealed increased growth of 
apple in two ARD soils, both in a bio-test as well as 
in field trials (Yim et al., 2017). 

The idea to change more than the abundance of 
one microbial strain becomes more and more 
popular as it is well accepted that different microbial 
traits might contribute to overcome replant disease 
in soil, and that soil microbial diversity is strongly 
altered by replant disease (Sun et al., 2014; Berg et 
al., 2017). Already 25 years ago, Utkhede and Smith 
(1992) reported the promotion of apple tree growth 
and fruit production in a former ARD soil after 
inoculation with a strain of Bacillus subtillis, which 
showed biocontrol activities against various 
pathogens. The authors could prove that the 
inoculation procedure was more effective than a 
classical formalin fumigation, mainly, as it did not 

only increase shoot growth and the cross-sectional 
trunk area but resulted in higher yields, too. This 
concept of disease suppression via the inoculation 
of biocontrol microbes was further followed up, 
mainly as several authors could prove a high 
abundance of Rhizoctonia spp. from ARD soils 
(Mazzola, 1997). In 2007, the same author 
published data on the manipulation of rhizosphere 
bacterial communities to induce suppressive soils 
(Mazzola, 2007). Crop rotation, including wheat 
cultivation after apple growth, reduced the 
susceptibility of soils for ARD, and correspondingly 
an increase of fluorescent pseudomonads in the soil 
was observed (Mazzola et al., 2002). Therefore, it 
was suggested to use selected Pseudomonas 
strains of the species P. fluorescens or P. putida with 
biocontrol properties against Rhizoctonia for 
inoculation (Mazzola et al., 2002). These 
approaches seem to be promising, since the use of 
chemical substances can be avoided. However, it 
needs to be taken into account that microbe-based 
inoculation strategies need to consider on the one 
hand the potential risk of the inoculum for the 
environment. For example, P. putida has been 
recently classified into risk class II according to the 
German biosafety level, as several severe cases of 
infections of humans with P. putida have been 
reported (Carpenter et al., 2008). On the other 
hand, inoculation-based approaches often do not 
result in the expected outcome as the inoculated 
microbes did not establish well in soil and were 
outcompeted by the autochthonous microflora in the 
soil. Here developments using specific carrier 
materials for the inoculum have been proven to be 
successful, which give inocula a protected initial 
niche for performance (van Elsas and Heijnen, 
1990). Furthermore, an improved understanding of 
the ecology of inoculants is required for more 
reliable and efficient use (Berg et al., 2017). 

Numerous experiments, in which treatments with 
Trichoderma harzianum (Wrede, 2015), cyanamid, 
stone dust and fertilizers amended with organic 
compounds such as humus, alkaline substances 
and seaweed were tested, were not or not 
sufficiently effective. Also, by incorporating spent 
mushroom compost, a composted substrate from 
mushroom production, into ARD soil, an increase of 
microbial activity was achieved leading to a 
significant increase in shoot growth, an effect being 
comparable to that of pasteurization (Manici, 2015; 
Franke-Whittle et al., 2018). More research is 
necessary to support or reject the hypothesis that 
many of these compounds were ineffective in 
harming soil pathogens, because they might have 
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persisted in microhabitats different from those 
reached by the amendments.  

The influence of important compounds exuded or 
released from roots ploughed into soil must be 
evaluated. In this respect, also carbon source-
dependent effects of anaerobic soil disinfestation 
might be discussed (Hewavitharana and Mazzola, 
2016). 

Arbuscular mycorrhizal fungi (AMF) are essential 
endophytic players in the microbial network in the 
rhizosphere as well as in plant root systems. 
Besides the often-cited promotion of P acquisition, 
the mycorrhizal host plants have manifold 
advantages for their survival and productivity 
(Finlay, 2004; Smith and Read, 2008; Smith and 
Smith, 2012). Thus, a positive contribution of AMF 
to healthy apple growth and productivity is the 
normal case. The selection and application of AMF 
isolates for a recovery from ARD has been 
considered a possible strategy, but seems to be a 
rather difficult aim. Since long, this approach gained 
often less successful results in other instances of 
disease control, especially in field trials (Schönbeck 
et al., 1994; Linderman, 2000; Whipps, 2004). 
However, the AM symbiosis can lead to striking 
positive effects in plant productivity when damages 
of abiotic stress, e.g. drought (Pinior et al., 2005) or 
of infections by soil borne pathogens (Grunewaldt-
Stöcker and von Alten, 2003; Whipps, 2004) and of 
nematodes (Calvet et al., 2001) were diminished. 
Regarding ARD, Čatská (1994) described a 
promising significant increase in productivity of 
apple plants (shoot and root biomass) due to 
Glomus fasciculatum, applied to ARD soil of two 
diverse soil types. Moreover, this mycorrhizal effect 
occurred together with an altered composition of the 
rhizosphere microbiome. Mehta and Bharat (2013) 
confirmed in tests with several AM fungi the specific 
success of a Glomus fasciculatum strain to 
overcome apple growth depression in ARD soil.  

To apply selected effective AMF for an ARD therapy 
at a large scale in nurseries or field sites, the 
production of AMF inoculum, the formulation, shelf 
life and commercial supply are yet difficult (Azcón-
Aguilar and Barea, 1997; Whipps, 2004). 
Nevertheless, the strategy to exploit naturally 
occurring or introduced AMF with a potential to 
alleviate abiotic stress and to control soil borne 
pathogens in combination with other biological 
agents or measurements against ARD seems 
attractive. AMF together with fine root endophytes 
(Glomus tenue, Orchard et al., 2017), are essential 

in the microbiome network and need attention, 
promotion and protection by all cultural practices. 
The recently widened molecular methods (e.g. real-
time PCR quantification of AMF, Alkan et al., 2004, 
Voříšková et al., 2017; DNA based sequencing for 
identification and diversity studies of AMF, Vasar et 
al., 2017) can help to determine fungal communities 
with positive effects on apple plants. Also, AMF 
isolates harboring mycoviruses (Ikeda et al., 2012) 
or endobacteria (Venice et al., 2017) are of interest 
with regard to their influence on the symbiotic 
performance of AMF in ARD soil as well as in 
biocontrol strategies.  

Besides modulating the soil microbiome, several 
recent strategies include the improvement of plant 
tolerance towards replant disease. Breeding of less 
susceptible rootstocks seems feasible as tolerant 
genotypes are available in Malus germplasm (e.g. 
Isutsa and Merwin, 2000; St. Laurent et al., 2010; 
Robinson et al., 2012; Volk et al., 2013). In addition, 
an improved strategy for defense responses of plant 
roots by modulating cellular signals such as the 
oscillation of Ca2+ concentration, reactive oxygen 
species burst or protein kinase activity (Emmett et 
al., 2014) is under debate.  

Finally, more work needs to be done to assess the 
socio-economic benefits of such approaches. 

Conclusions 
Despite increasing data on ARD, combined efforts 
of plant scientists, ecologists, microbiologists, soil 
scientists as well as socio-economists and growers 
are needed to fully understand and overcome ARD. 
The German consortium BonaRes ORDIAmur 
(Overcoming Replant Disease by an Integrated 
Approach; www.ordiamur.de) aims at finding 
indicators for infected soil, to restore its functional 
biodiversity, to identify and use genetic factors 
controlling ARD in apple and to optimize the 
composition of microbial communities to promote 
apple growth in ARD soil (Figure 4). Two important 
considerations for future research in ARD have to 
be taken into account: Firstly, a proper comparison 
to healthy or virgin soil is difficult, since even small 
spatial distances to sites where healthy soil is taken 
might involve very drastic changes in soil physical, 
chemical and biological properties. Moreover, the 
vegetation of the control site will also influence the 
(micro)biome of the soils. On the other hand, 
disinfected soil can neither be considered a proper 
control soil. Secondly, future studies should 
emphasize the soil sampling and distinguish bulk 
soil, rhizosphere and rhizoplane, as well as define 
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the root order and degree of damage. For both 
aspects, reproducible and internationally accepted 
definitions would be helpful. 
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