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Abstract
RNA-sequencing technology has been widely 
adopted to investigate host responses during 
infection with pathogens. Dual RNA-sequencing 
(RNA-seq) allows the simultaneous capture of 
pathogen-specific transcripts during infection, 
providing a more complete view of the interaction. 
In this review, we focus on the design of dual RNA-
seq experiments and the application of downstream 
data analysis to gain biological insight into both 
sides of the interaction. Recent literature in this 
area demonstrates the power of the dual RNA-seq 
approach and shows that it is not limited to model 
systems where genomic resources are available. 
Sequencing costs continue to decrease and single 
cell transcriptomics is becoming more feasible. In 
combination with proteomics and metabolomics 
studies, these technological advances are likely to 
contribute to our understanding of the temporal 
and spatial aspects of dynamic plant–pathogen 
interactions.

A dual approach in planta
The interaction between plants and pathogens is an 
active and dynamic process that can be likened to a 
duel. Plants have complex defence mechanisms that 
can be rendered ineffective when pathogens inter-
fere with one of the various processes required for 
host defence. These processes include penetration 

resistance, recognition by Pattern Recognition 
Receptors (PRRs), phytohormone signalling path-
ways, secretory pathways, secondary metabolite 
production, and plant cell death (Dou and Zhou, 
2012). Until recently, transcriptomic approaches 
have been applied in the host and pathogen sepa-
rately to obtain the gene expression profile of each 
organism and gain insight into infection biology or 
host defence mechanisms.

RNA sequencing (RNA-seq) is a powerful tech-
nology that does not rely on any prior knowledge 
of transcripts and can generate vast quantities of 
data with much smaller costs involved than for 
older techniques such as microarrays (Pareek et al., 
2011; Wilhelm and Landry, 2009). An advantage 
of RNA-seq in the field of plant–pathogen interac-
tions is that both plant and pathogen transcripts 
can be detected simultaneously and accurately in 
the same sample. This tactic, known as dual RNA-
seq, in planta RNA-seq, simultaneous RNA-seq, or 
comparative RNA-seq, is a relatively new technique 
both in the plant and medical fields. In plants, it 
allows for the study of plant–pathogen interactions 
in herbaceous crops (Chen et al., 2013; Kunjeti 
et al., 2012; Lowe et al., 2014) as well as trees 
(Hayden et al., 2014; Liang et al., 2014; Teixeira et 
al., 2014). This review outlines technical considera-
tions for dual RNA-seq experiments, summarizes 
recent insights drawn from such approaches in 
plant–pathogen interactions, and provides an 
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overview of the next generation of dual approaches. 
Since this technique is most useful to study interac-
tions with pathogens with complex prokaryotic and 
eukaryotic genomes, viral pathogens have not been 
included in this review.

It’s all in the design
Experimental design considerations for a dual 
RNA-seq experiment can be divided into three 
broad categories: sample generation, data genera-
tion and data analysis. An overview of the process 
can be found in Fig. 8.1.

Figure 8.1  Flow chart of a dual RNA-seq experiment with example software programs. (A) Experimental 
design considerations can include comparisons between resistant and susceptible interactions, normalized 
to a mock inoculated control. (B) Different library preparation options include enrichments for mRNA, small 
RNAs, stranded RNA and total RNA. (C) The sequencing platform can vary based on availability and aim of the 
study. Paired-end sequencing on the Illumina platform is a common approach for RNA-seq. Deep sequencing 
is required for dual RNA-seq approaches. Read length can vary depending on the application and sequencing 
platform used. (D) Downstream read quality control can be implemented. Filtering for a minimum Phred quality 
score of Q30 is generally optimal, but the threshold is data dependent. (E) Dual RNA-seq is performed by 
mapping to both the host and pathogen reference genome sequences, or to the host first with the remaining 
reads mapped to the pathogen reference. Endophyte contamination can be removed by mapping to common 
contaminant sequences obtained from databases such as Refseq. (F) If a reference is not available, a de novo 
transcriptome can be assembled from the reads. (G) The mapping approach will differ based on the type of 
reference used and different methods can be used when mapping to the host or the pathogen. (H) Other 
programs commonly used for expression quantification include HTSeq, featureCounts (Liao et al., 2014) and 
Limma (Ritchie et al., 2015). (I) Differential Gene Expression (DGE) analysis can be performed using a number of 
methods. The two examples listed here can be used for both transcriptome and genome-based DGE analysis. 
(J) Genes identified as differentially expressed can be used in programs and databases such as BinGO (Maere 
et al., 2005), MapMan (Thimm et al., 2004) and Kegg (Ogata et al., 1999) to predict biological significance 
(Maere et al., 2005).



Dual RNA-seq of the Plant–Pathogen Duel |  129

Sample generation
When considering experimental design for sample 
generation, the main factors include trial design, 
sample harvesting approach and sample handling 
(reviewed in Yang and Wei, 2015).

Two important trial design and sample harvest-
ing considerations for dual RNA-seq experiments 
are the predicted gene number in the pathogen and 
host genomes, and the relative amounts of pathogen 
and host cells within a given sample (Westermann 
et al., 2012). Both of these factors influence the 
amount of pathogen RNA relative to host RNA 
within a sample. A lower ratio of pathogen to host 
RNA requires greater sequencing depth to capture 
the full extent of biological variation within the 
pathogen.

A dual RNA-seq experiment considering 
an interaction between a eukaryotic host and 
prokaryotic pathogen requires approximately 10 
to 20 times as many reads than would usually be 
required. This is partly due to the smaller amount 
of cellular RNA within prokaryotic cells relative to 
eukaryotes (Westermann et al., 2012). While the 
relative amounts of cellular RNA between host and 
pathogen are more similar in eukaryote–eukaryote 
interactions, the higher read coverage is still neces-
sary due to the lower quantity of pathogen versus 
host cells, which results in less pathogen RNA per 
sample.

An important trial design consideration specific 
to dual RNA-seq experiments is the inclusion 
of a control for pathogen gene expression. This 
can be done by comparing in planta expression 
of pathogen genes to in planta gene expression of 

a non-pathogenic strain and/or pathogen gene 
expression in an agar culture or spore suspension 
(Kawahara et al., 2012). Synthetic RNA spike-ins 
can also be included to quantify both pathogen and 
host RNA (Box 8.1).

Data generation
The main experimental design considerations for 
data generation include the level of sample replica-
tion, library construction and sequencing (Liu et 
al., 2014).

Sample replication
One of the first factors to consider in experimental 
design is the level of sample replication (Auer and 
Doerge, 2010). Sample replication is divided into 
technical replication, which is defined as perform-
ing the same analysis multiple times on the same 
sample, and biological replication, a study depend-
ent term that can be loosely defined as harvesting 
the same type of sample from the same type of 
organism from the same conditions.

Technical variation arises when errors occur in 
the experimental procedure and can be accounted 
for through technical replication. Illumina sequenc-
ing produces negligible technical variability, 
removing the need for technical replication in RNA-
seq experiments (Marioni et al., 2008). However, 
when coverage is low for certain transcripts, techni-
cal variation can still arise (McIntyre et al., 2011). 
Thus, technical replication should be considered 
for dual RNA-seq experiments where there is low 
representation of pathogen RNA within a sample, 
resulting in low coverage of pathogen transcripts.

Box 8.1  Total RNA quantification

It is not always possible to accurately predict the amounts of host and pathogen RNA that will be present 
in a sample. While it is possible to measure the amount of host and pathogen DNA in a sample using 
qRT-PCR, this is not always an accurate reflection of total host and pathogen RNA. This problem can be 
circumvented by the addition of RNA spike-ins to samples. An RNA spike-in for RNA-seq is a mixture 
of synthesized RNA transcripts of known sequence, concentration and abundance. While inclusion of 
an RNA spike-in could increase the cost of sequencing due to increased coverage requirements, it can 
be used to measure sensitivity and accuracy of sequencing as well as to detect biases that can occur 
during RNA-seq (Jiang et al., 2011). Furthermore, standard curves can be generated from RNA spike-ins. 
This allows for more accurate quantification of transcript abundance (Jiang et al., 2011). In dual RNA-
seq experiments, it is possible to use these standard curves to estimate host and pathogen RNA levels 
within a sample. However, it is important to ensure that none of the spike-in sequences are present in the 
genome of either host or pathogen, as this could preclude accurate quantification of genes containing 
similar sequences and the use of those spike-in sequences (Jiang et al., 2011).
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While technical replication can be excluded due 
to reliability of the technology, biological replica-
tion remains crucial to all RNA-seq experiments. 
Besides accounting for biological variation (Hansen 
et al., 2011; Nettleton, 2014), biological replication 
significantly affects the power and accuracy of differ-
ential expression analyses. Liu et al. (2014) showed 
that increasing the number of biological replicates 
sequenced increased the number of accurately 
identified differentially expressed genes, whereas 
increased read depth produced diminishing returns 
for both statistical power and the precision with 
which differential expression is detected. This is 
especially important in dual RNA-seq experiments 
where biological variation is introduced from both 
pathogen and host.

Library construction and sequencing
The main factors to consider during library con-
struction and sequencing are depletion methods, 
strandedness, insert size, read length, and read 
depth. The use of strand-specific rather than non-
strand-specific libraries [reviewed in Levin et al. 
(2010)], allows the accurate detection of anti-sense 
transcription and can allow accurate expression 
quantification of overlapping transcripts. Thus, 
strand-specific sequencing in dual RNA-seq 
experiments could enable detection of evidence 
suggesting host–pathogen interaction through anti-
sense transcription.

The choice of insert size is dependent on the 
complexity of the transcriptome and the target 
RNA species (reviewed in Head et al., 2014). Insert 
size selection can be a limiting factor in which RNA 
species can be analysed because inclusion of a size 
selection step during library preparation results in 
loss of transcripts shorter than the selected insert 
size. Insert size selection also imposes an upper 
limit on read length, since reads longer than the 
insert size will sequence into adapters, providing no 
new information.

Apart from insert size, the choice of read length 
is dependent mainly on the objectives of the study 
and the quality of the reference sequence used 
for mapping. If a high quality and well annotated 
reference sequence is available, increasing read 
length above 50 bp is unnecessary for accurate 
detection of differential expression (Chhangawala 
et al., 2015). Similarly, sequencing of paired-end 
instead of single-end reads does not significantly 

affect detection of differential expression in these 
cases (Chhangawala et al., 2015). Conversely, when 
studying organisms with less well defined reference 
sequences, sequencing of longer paired-end reads 
increases the accuracy of splice junction detection 
(Chhangawala et al., 2015). When no reference 
sequence is available, it is often assumed that longer 
reads equate to increased accuracy for de novo 
assembly. Similar to the detection of differential 
expression, however, there seems to be a species-
specific threshold beyond which increasing read 
length becomes redundant (Chang et al., 2014).

In cases where a high quality reference is avail-
able, less coverage is required for accurate transcript 
identification and quantification, compared to 
cases where a reference is missing. This is because 
gaps in an assembly arising from low coverage can 
be filled using the underlying reference sequence. 
For studies relying on de novo assembly, a predicted 
minimum of 30× total reference coverage is required 
(Martin and Wang, 2011), while genome-guided 
assembly can be accomplished with coverage below 
10× (Denoeud et al., 2008).

For an RNA-seq experiment to be representa-
tive, it is important to make sure that the number 
of reads is sufficient to account for the least rep-
resented RNA species. This is also referred to as 
sufficient sequencing depth. To obtain adequate 
depth for a dual RNA-seq experiment, enough 
reads need to be sequenced to have at least 1× cov-
erage of the least represented pathogen transcript in 
the sample with the lowest level of pathogen to host 
RNA. However, it is almost impossible to know this 
information when performing de novo RNA-seq 
experiments.

Techniques to deplete or enrich certain RNA 
species, such as RNA fractionation and poly(A) 
selection, can enhance detection of transcripts with 
low expression in eukaryotes (Sims et al., 2014). 
Depletion of the rRNA fraction can further reduce 
the required sequencing depth of an experiment 
and, unlike poly(A) selection, allow for detection of 
non-poly(A) transcripts. Although depletion-based 
methods allow for selection of non-poly(A) RNA 
species, these methods can bias quantification of 
abundant transcripts and decrease exon coverage 
and power to detect splice junctions due to the 
presence of sequenced introns from pre-mRNA in 
eukaryotes (Martin and Wang, 2011; Sims et al., 
2014).
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Data analysis
As with sample and data generation, data analysis 
considerations are dependent on the underlying 
biological questions. Data analysis for the majority 
of RNA-seq experiments follows three sequential 
steps: (1) quality control, (2) mapping, expres-
sion quantification and DE analysis, and (3) 
downstream analysis. Due to the variety of tools 
and platforms that can be used for RNA-seq data 
analysis (Grant et al., 2011), programs typically 
used for RNA-seq data analysis may be created for 
specific analysis types and tested within a specific 
experimental context. Thus, it is often advisable 
to repeat an analysis using different programs and 
compare the outputs.

Quality control
Quality control for dual RNA-seq studies is 
similar to that used for traditional RNA-seq stud-
ies. However, contaminant filtering becomes more 
complicated as reads from both host and pathogen 
need to be retained. While reads originating from 
the host and pathogen can be separated by map-
ping to the host and pathogen reference sequences 
(Schulze et al., 2015; Westermann et al., 2012), 
contamination of various forms should be consid-
ered in order to improve the accuracy and efficiency 
with which genes and transcripts are mapped and 
quantified. Contamination may occur in two main 
forms: non-mRNA species (which constitute the 
majority of the total RNA extracted) and reads 
representing mRNA extracted from organisms 
(saprophytes and endophytes) other than the 
organisms of interest. These forms of contamina-
tion may skew the quantification of genes and 
transcripts when assembling and mapping reads 
to the reference. Westermann et al. (2012) provide 
insight into dealing with contaminating RNA which 
is species and study dependent.

Contamination in the form of RNA extracted 
from endophytic or saprophytic organisms is 
especially important in plant–pathogen interaction 
studies. Saprophytes may be present at the sites 
of wounding due to the degradation of tissue that 
occurs, while endophytes colonize areas below the 
surface of the plant tissue without causing symp-
toms. Thus RNA from these types of organisms 
can be present in RNA-seq libraries. While surface 
sterilization could be used to decrease the presence 
of saprophytes, the process is time consuming 

and may result in damage to host RNA. Surface 
sterilization could also result in decreased pathogen 
representation, which is counterproductive for 
a dual RNA-seq experiment. Therefore, removal 
of these contaminating sequences requires bioin-
formatics intervention. This can be accomplished 
through stringent mapping of data to a database 
of common contaminant cDNA sequences con-
structed from databases such as RefSeq, UniRef100 
and GenBank (Ikeue et al., 2015). In cases where 
reference genomes are available for known endo-
phytes and saprophytes, stringent alignment to 
these references could also be used to filter reads 
(Zuluaga et al., 2015).

Mapping, expression quantification and 
differential expression analysis
Mapping is the reconstruction of the transcriptome 
through alignment of reads to a reference sequence. 
In dual RNA-seq experiments, reads are mapped 
to the host reference sequence and the unaligned 
sequences are retained and mapped to the patho-
gen reference sequence (Teixeira et al., 2014). A 
common program used for read alignment to a 
reference is the short read aligner Bowtie, which is 
part of the Tophat package of the Tuxedo pipeline 
(Trapnell et al., 2012). Box 8.2 describes mapping 
and splice site determination. Bowtie allows the 
user to set the number of mismatches between the 
query and reference sequence, effectively setting a 
stringency threshold for the alignment (Langmead 
and Salzberg, 2012). This affects the stringency 
with which reads will be aligned and effectively 
assigned to the host or pathogen reference.

Once the reads have been assembled and fil-
tered into host and pathogen libraries, transcript 
abundance quantification and differential expres-
sion analysis can be performed (Boxes 8.3 and 
8.4, respectively). Expression levels are quantified 
by counting the number of reads mapped to each 
gene/transcript, normalized across the length of the 
gene/transcript to account for bias across abundant 
gene regions, relative to the number of reads in the 
original library. Programs like Cufflinks (Trapnell 
et al., 2012) and RSEM (Li and Dewey, 2011) can 
be used to accurately quantify relative numbers of 
genes and transcripts. Differential expression analy-
sis is commonly performed using packages such as 
Cuffdiff, DESeq and EdgeR (Anders and Huber, 
2010; Robinson et al., 2010; Trapnell et al., 2013).
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If a reference sequence is incomplete or una-
vailable, de novo assembly can be performed to 
create a reference sequence. Yazawa et al. (2013) 
describe a method for de novo assembly of the 
in planta pathogen transcriptome in the Sor-
ghum bicolor and Bipolaris sorghicola interaction. 
Several putative defence and virulence related 
genes were identified. In this case, however, a 
reference sequence was available for the host, 
and host sequences could easily be removed from 
the assembled pathogen transcriptome by align-
ment to the host reference sequence, resulting 
in 232,760 non-host transcripts (Yazawa et al., 
2013). In cases where neither reference sequence 

is available, high quality annotation of de novo 
assembled sequences is crucial because separation 
of host and pathogen sequences will have to be 
done through alignment-based homology. When 
de novo assembly is required, it is important to 
consider the complexity of the transcriptome to 
be assembled. Increased transcriptome complex-
ity, such as a large number of alternative splicing 
events, complicates the alignment of reads (Chang 
et al., 2014). The accuracy of de novo assemblies 
increases with read length, which reduces map-
ping uncertainty. While there are algorithms that 
account for mapping uncertainty, thereby allowing 
the use of shorter read lengths (Li et al., 2010), 

Box 8.3  Gene and transcript quantification
Programs discussed here – Cufflinks (Trapnell et al., 2012), IsoEM (Nicolae et al., 2011), HTSeq (Anders 
et al., 2015) and RSEM (Li and Dewey, 2011), have proven to estimate gene abundances with similar 
accuracy, however, their accuracy for transcript abundance estimation varies. Cufflinks is capable of 
calculating both gene and isoform level abundance estimates, although it has proven to be less efficient 
when considering computational memory, making it a time-consuming but accurate choice. HTSeq does 
not retain reads that map to multiple genes, which can prevent accurate expression quantification of 
overlapping genes. RSEM allows accurate quantification of gene and isoform abundances for organisms 
that do not have a reference genome. Isoform abundance estimations can be improved with paired-end 
read libraries when provided with an annotation of expected isoforms. IsoEM outperforms its competi-
tors in its ability to estimate isoform abundances by making use of paired-end libraries and annotated 
lists of expected isoforms.

Box 8.2  Mapping and splice site determination

One of the most important aspects when mapping RNA-seq data to a reference genome is the detection 
of splice site junctions, and this should be considered when choosing an appropriate program. In many 
programs, the accuracy of estimating isoform abundances is still debatable. It is important to detect 
splice site junctions with as much accuracy as possible (Chandramohan et al., 2013), particularly when 
a priori splice site annotations are unavailable. Programs discussed here include Tophat (Kim et al., 
2013), MapSplice (Wang et al., 2010), SOAPsplice (Huang et al., 2011), GSNAP (Wu and Nacu, 2010) 
and CRAC (Philippe et al., 2013). CRAC is the only known splice junction mapper that includes the 
discovery of transcriptomic splice junctions and chimeras, single nucleotide variants, and indels in a 
single analysis step. MapSplice specializes in determining splice site junctions from empirical methods 
rather than from the canonical intronic dinucleotide (ITDN) detecting methods, while TopHat makes use 
of the ultrafast short read aligner Bowtie and performs canonical splice site detection. SOAPsplice is 
capable of detecting true splice site junctions when there is low coverage, and provides efficient use of 
computational memory by making use of the Burrows–Wheeler transformation. GSNAP makes use of 
both single-end and paired-end reads, and can tolerate a variety of read lengths from very short to long 
length reads. GSNAP detects splice junctions using a probabilistic model as well as user defined splice 
site databases. Once successful detection of splice site junctions is achieved, the quantification of gene/
transcript expression is the next step.
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these algorithms assume the availability of a high 
quality reference sequence.

Downstream analysis
Potential genes and pathways involved in the 
host–pathogen interaction can be identified during 
downstream analysis by comparing annotations 
of the identified differentially expressed genes 
to databases. These resources utilize controlled 
vocabularies provided by the Gene Ontology Con-
sortium (GOC), which defines how genes function 
biologically within three categories: biological pro-
cess, molecular function and cellular localization 
(Ashburner et al., 2000). Once potential pathways 
or biological functions have been identified through 
GOC, a Gene Set Enrichment Analysis (GSEA) 
can be conducted. This may aid in identifying path-
ways that are perturbed in the host and pathogen 
during the interaction.

The pathogen–host interactions database (www.
phi-base.org) provides curated information on 
genes that affect the interaction between host and 
pathogens based on functional genetics studies 
with links to experimental evidence (Urban et al., 
2015). A BLAST analysis against the nucleotide 
or predicted amino acid sequences in the database 
provides clues about whether pathogen genes 
expressed in planta are putative effectors, virulence 
factors or pathogenicity factors. PathoPlant (www.

pathoplant.de) (Bülow et al., 2004) is a plant–path-
ogen interactions database with information on 350 
interactions from model plant–pathogen systems. 
The database also allows the identification of signal 
transduction pathway components potentially 
induced during pathogen challenge.

For insight into host responses, the TreeGenes 
database (Wegrzyn et al., 2008), Phytozome 
database (http://phytozome.jgi.doe.gov) (Good-
stein et al., 2012), The Plant Genome Integrative 
Explorer (PlantGenIE; www.plantgenie.org) (Sun-
dell et al., 2015), and Gramene (www.gramene.org) 
(Liang et al., 2008) provide tools for analyses and 
visualization. Gramene contains the Plant Reac-
tome database, which can be used to identify plant 
metabolic and regulatory pathways (Tello-Ruiz et 
al., 2016).

Weapons in plant–pathogen 
duels
The ultimate goal of a dual RNA-seq experiment 
is to gain biological insight into the interaction 
that is being studied, specifically those factors that 
determine disease severity. Since the dual RNA-
seq approach is relatively new, it has not yet been 
applied to many systems. Several recent examples, 
representing interactions between a variety of plant 
and pathogen species, are listed in Table 8.1. This 

Box 8.4  Differential expression analysis

When considering differential expression analysis, a number of confounding issues can arise, such as 
inherent errors in next-generation sequencing technologies, biases introduced due to length and compo-
sition of genes and transcripts, the existence of multiple gene isoforms, and the problem of overdispersion 
(Zhang et al., 2014). Overdispersion can occur when biological replicates are increased to account 
for biological variation. Using a Poisson distribution to model this variation results in underestimates. 
When considering differential gene expression, using a variance stabilizing transformation decreases 
overdispersion (Soneson and Delorenzi, 2013). However, if a negative binomial (NB) distribution is used, 
it effectively eliminates overdispersion (Anders and Huber, 2010; Zhang et al., 2014). Programs such as 
Cuffdiff, edgeR (Robinson et al., 2010) and DESeq (Anders and Huber, 2010) use very different statistical 
approaches to account for these confounding issues. EdgeR employs the empirical Bayes and weighted 
likelihood methods which allow for gene-specific variation while generalized linear models are used to 
account for complex experimental designs (Chen et al., 2014). DESeq has the option to use a variance 
stabilizing transformation, which results in differentially expressed gene candidates being balanced over 
the large dynamic range which is typical of RNA-seq experiments. Finally, Cuffdiff, a popular choice for 
differential gene expression analysis, estimates expression at transcript-level resolution and stabilizes 
variability across different biological replicates. Cuffdiff2 is capable of identifying differentially expressed 
transcripts and genes as well as promoter-preference changes where applicable (Trapnell et al., 2013).



Table 8.1  Summary of dual RNA-seq experiments showing genomic resources utilized, biological replicates (BR), mapping statistics and biological insight for host 
and pathogen

Host Pathogen
Pathogen 
type Time-point(s) BR Host Pathogen

% reads 
mapped 
to 
pathogen Main finding: host

Main finding: 
pathogen Reference

Populus 
trichocarpa × 
deltoides

Melampsora larici-
populina (virulent 
and avirulent 
isolates)

Fungus, 
biotroph

18, 21, 24 hpi 
(incompatible) 
18, 24, 48 hpi 
(compatible)

1 P. trichocarpa 
genome v2.2

Genome v1.0 1.30% Host sulfate 
transporter with 
greatly increased 
transcription after 
infection

19 candidate 
effectors identified

Petre et 
al., 2012

Oryza sativa Magnaporthe 
oryzae 
(compatible, 
incompatible 
isolates)

Fungus, 
hemibiotroph

24 hpi 2 Oryza sativa 
build 5 
genome

Magnaporthe 
grisea release 6 
genome

0.1–0.2% PR and phytoalexin 
genes in plant. 
More pronounced 
changes in 
incompatible 
interactions

Secreted 
protein genes 
were identified 
among the 240 
up-regulated 
pathogen genes

Kawahara 
et al., 
2012

Triticum aestivum Zymoseptoria 
tritici

Fungus, 
hemibiotroph

7, 13, 56 dpi 3 – Mycosphaerella 
graminicola 
genome v2.0

Not 
reported

– PCWDEs 
had different 
expression profiles 
at the biotrophic, 
necrotrophic and 
saprotrophic 
stages

Brunner 
et al., 
2013

Sorghum bicolor Bipolaris 
sorghicola

Fungus, 
necrotroph

12, 24 hpi 4 Sorghum 
genome

De novo 
assembled 
transcriptome

Not 
reported

Pathogen-induced 
receptor, signalling, 
transcription factor 
and redox genes 
were expressed 

LysM domain 
containing protein 
gene, PCWDEs, 
TFs identified

Yazawa et 
al., 2013

Theobroma 
cacao

Moniliophthora 
perniciosa

Fungus, 
hemibiotroph

30 dpi 5 Theobroma 
cacao 
genome v0.9

M. perniciosa 
genome

0.15–
0.44%

Genes associated 
with carbohydrate 
degradation, 
secondary 
metabolism and cell 
wall modification 
were up-regulated, 
genes involved in 
starch biosynthesis 
and nitrogen 
assimilation were 
down-regulated

Putative effectors 
identified, model 
for biotrophic 
phase proposed

Teixeira et 
al., 2014

Notholithocarpus 
densiflorus

Phytophthora 
ramorum

Oomycete, 
hemibiotroph

1, 5 dpi 3 De novo 
transcriptome

P. ramorum 
genome

0.1–4.5% Many R genes 
and pathogenesis-
related (PR) genes 
were transcribed in 
the host, as well as 
genes related to cell 
death and signalling

Pathogenicity 
factor genes with 
roles in necrosis 
and host cell 
damage were 
expressed by the 
pathogen

Hayden et 
al., 2014

Brassica napus Leptosphaeria 
biglobosa

Fungus, 
necrotroph

7, 14 dpi 2 B. napus, B. 
rapa and B. 
oleracea exon 
array

Genome 5–44% Jasmonic acid (JA) 
and salicylic acid 
(SA) pathway genes 
as well as cell wall 
remodelling genes 
were expressed

Expressed 
more cell wall 
degrading enzyme 
genes than the 
hemibiotroph

Lowe et 
al., 2014

Leptosphaeria 
maculans

Fungus, 
hemibiotroph

7, 14 dpi 2 B. napus, B. 
rapa and B. 
oleracea exon 
array

Genome 6–61% SA related gene was 
expressed

Might employ 
carbohydrate 
binding enzymes 
(CAZy) such as 
LysM to evade the 
PAMP-triggered 
immunity and 
also expressed 
avirulence genes

Lowe et 
al., 2014

Arabidopsis 
thaliana

Hyaloperonospora 
arabidopsidis 
(virulent, avirulent 
isolates)

Fungus, 
biotroph

1, 3, 5 dpi 3 Genome Genome 0.022–
1.452%

SA responses 
required for defence

Pathogen 
suppresses 
host SA-related 
defence

Asai et 
al., 2014

Eucalyptus 
nitens

Phytophthora 
cinnamomi

Oomycete, 
hemibiotroph

5 dpi 3 E. grandis 
v1.1

P. cinnamomi 
draft genome

1% PR-9 gene highly 
expressed

Crinkler family 
effector highly 
expressed

Meyer et 
al., 2016



Table 8.1  Summary of dual RNA-seq experiments showing genomic resources utilized, biological replicates (BR), mapping statistics and biological insight for host 
and pathogen

Host Pathogen
Pathogen 
type Time-point(s) BR Host Pathogen

% reads 
mapped 
to 
pathogen Main finding: host

Main finding: 
pathogen Reference

Populus 
trichocarpa × 
deltoides

Melampsora larici-
populina (virulent 
and avirulent 
isolates)

Fungus, 
biotroph

18, 21, 24 hpi 
(incompatible) 
18, 24, 48 hpi 
(compatible)

1 P. trichocarpa 
genome v2.2

Genome v1.0 1.30% Host sulfate 
transporter with 
greatly increased 
transcription after 
infection

19 candidate 
effectors identified

Petre et 
al., 2012

Oryza sativa Magnaporthe 
oryzae 
(compatible, 
incompatible 
isolates)

Fungus, 
hemibiotroph

24 hpi 2 Oryza sativa 
build 5 
genome

Magnaporthe 
grisea release 6 
genome

0.1–0.2% PR and phytoalexin 
genes in plant. 
More pronounced 
changes in 
incompatible 
interactions

Secreted 
protein genes 
were identified 
among the 240 
up-regulated 
pathogen genes

Kawahara 
et al., 
2012

Triticum aestivum Zymoseptoria 
tritici

Fungus, 
hemibiotroph

7, 13, 56 dpi 3 – Mycosphaerella 
graminicola 
genome v2.0

Not 
reported

– PCWDEs 
had different 
expression profiles 
at the biotrophic, 
necrotrophic and 
saprotrophic 
stages

Brunner 
et al., 
2013

Sorghum bicolor Bipolaris 
sorghicola

Fungus, 
necrotroph

12, 24 hpi 4 Sorghum 
genome

De novo 
assembled 
transcriptome

Not 
reported

Pathogen-induced 
receptor, signalling, 
transcription factor 
and redox genes 
were expressed 

LysM domain 
containing protein 
gene, PCWDEs, 
TFs identified

Yazawa et 
al., 2013

Theobroma 
cacao

Moniliophthora 
perniciosa

Fungus, 
hemibiotroph

30 dpi 5 Theobroma 
cacao 
genome v0.9

M. perniciosa 
genome

0.15–
0.44%

Genes associated 
with carbohydrate 
degradation, 
secondary 
metabolism and cell 
wall modification 
were up-regulated, 
genes involved in 
starch biosynthesis 
and nitrogen 
assimilation were 
down-regulated

Putative effectors 
identified, model 
for biotrophic 
phase proposed

Teixeira et 
al., 2014

Notholithocarpus 
densiflorus

Phytophthora 
ramorum

Oomycete, 
hemibiotroph

1, 5 dpi 3 De novo 
transcriptome

P. ramorum 
genome

0.1–4.5% Many R genes 
and pathogenesis-
related (PR) genes 
were transcribed in 
the host, as well as 
genes related to cell 
death and signalling

Pathogenicity 
factor genes with 
roles in necrosis 
and host cell 
damage were 
expressed by the 
pathogen

Hayden et 
al., 2014

Brassica napus Leptosphaeria 
biglobosa

Fungus, 
necrotroph

7, 14 dpi 2 B. napus, B. 
rapa and B. 
oleracea exon 
array

Genome 5–44% Jasmonic acid (JA) 
and salicylic acid 
(SA) pathway genes 
as well as cell wall 
remodelling genes 
were expressed

Expressed 
more cell wall 
degrading enzyme 
genes than the 
hemibiotroph

Lowe et 
al., 2014

Leptosphaeria 
maculans

Fungus, 
hemibiotroph

7, 14 dpi 2 B. napus, B. 
rapa and B. 
oleracea exon 
array

Genome 6–61% SA related gene was 
expressed

Might employ 
carbohydrate 
binding enzymes 
(CAZy) such as 
LysM to evade the 
PAMP-triggered 
immunity and 
also expressed 
avirulence genes

Lowe et 
al., 2014

Arabidopsis 
thaliana

Hyaloperonospora 
arabidopsidis 
(virulent, avirulent 
isolates)

Fungus, 
biotroph

1, 3, 5 dpi 3 Genome Genome 0.022–
1.452%

SA responses 
required for defence

Pathogen 
suppresses 
host SA-related 
defence

Asai et 
al., 2014

Eucalyptus 
nitens

Phytophthora 
cinnamomi

Oomycete, 
hemibiotroph

5 dpi 3 E. grandis 
v1.1

P. cinnamomi 
draft genome

1% PR-9 gene highly 
expressed

Crinkler family 
effector highly 
expressed

Meyer et 
al., 2016
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demonstrates the versatility of dual RNA-seq and 
the importance of experimental design in this type 
of study. Experimental design directly affects the 
kind of results that can be obtained from a dual 
RNA-seq experiment. The number of biological 
replicates among the studies in Table 8.1 ranges 
from one to five. With fewer biological replicates, 
very few differentially expressed genes were iden-
tified, but the information could still be used to 
guide functional characterization studies of the 
interaction. Knowledge of disease progression 
and the physical interaction between the host and 
pathogen is valuable when designing the study 
and interpreting the biological significance of the 
results. Examples include information about the 
timing of hyphal penetration of host cells or the 
switch between biotrophic and necrotrophic stages 
in hemibiotrophic pathogens, which can then be 
used to select the most prudent time points for 
RNA-seq.

Different sample groups can be chosen to 
understand those responses that are most likely 
to be involved in a particular phenotype, such as 
increased or reduced host resistance or pathogen 
virulence. The approaches listed in Table 8.1 
included comparisons between resistant and sus-
ceptible hosts inoculated with a virulent pathogen, 
as well as comparisons between resistant hosts 
inoculated with virulent or avirulent pathogen 
strains.

The percentage of reads mapping to the patho-
gen reference sequence varies drastically, but it is 
typically very low compared to that of the host. 
Another technical aspect that becomes apparent is 
that several studies were possible without the use of 
an existing reference sequence, which expands the 
possible number of interactions that can be studied.

While the interactions are quite complex, 
researchers have been able to use the informa-
tion to subsequently target genes for functional 
characterization. For example, Petre et al. (2016) 
and Yokotani et al. (2014) proceeded to character-
ize candidate effectors and a transcription factor, 
respectively. Many new approaches are becom-
ing available for functional characterization. For 
example, the CRISPR-Cas9 system appears to be 
a good alternative to T-DNA knock-outs in fungi 
and its feasibility was recently demonstrated in 
Trichoderma reesei (Liu et al., 2015) and Pyricularia 
oryzae (Arazoe et al., 2015) following codon usage 

optimization of the Cas9 for use in filamentous 
fungi. This method may be favoured over conven-
tional knock-out and knock-down systems due 
to its efficiency and the ability to produce knock-
downs using a less efficient Cas9 nuclease (Doudna 
and Charpentier, 2014).

Next generation of dual 
approaches
The decrease in sequencing costs will promote 
dual RNA-seq approaches for plant–pathogen 
interaction studies and could allow multiple time-
points and replicates to be investigated. Recent 
multiplexing approaches in RNA-seq such as 
RNA-tagSeq (Shishkin et al., 2015) and Ligation 
Mediated RNA sequencing (Hou et al., 2015) 
are set to further reduce costs of sequencing. 
Additionally, the number of sequenced genomes 
of plant hosts and their pathogens is rapidly 
increasing, facilitating dual RNA-sequencing 
studies [e.g. Joint Genome Initiative: 1000 fungal 
genomes project, http://1000.fungalgenomes.org 
(Kovalchuk et al., 2013; Spatafora et al., 2013)]. 
The sequencing of new plant transcriptomes 
[1000 Plant Transcriptomes (1KP Project), www. 
iplantcollaborative.org] and improvement of anno-
tations is constantly occurring, providing more 
informative resources for dual RNA-seq experi-
ments.

Laser capture microdissection coupled with 
an expression profiling technique may become a 
valuable tool for understanding the temporal and 
spatial dynamics of plant–pathogen interactions 
(Podgorny and Lazarev, 2016). Laser capture micro-
dissection was applied to stomatal and surrounding 
areas of grapevine leaves in contact with the downy 
mildew pathogen Plasmopara viticola during early 
stages of infection, allowing the researchers greater 
resolution of transcriptional responses compared 
to whole leaves (Lenzi et al., 2016). Laser capture 
coupled with microarray expression profiling was 
also used to determine the expression of Melamp-
sora larici genes in the palisade mesophyll of poplar 
leaves and in the uredinium, revealing genetic sig-
natures indicative of biotrophy and the switch to 
sporulation, respectively (Hacquard et al., 2010).

We are currently in an age where single cell RNA-
seq transcriptomics is possible [reviewed in Saliba 
et al. (2014)]. There are two technologies which 
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will allow direct RNA-sequencing using nano-
pores. One is where each nucleotide is read while 
the RNA molecule is threaded through the pore. 
The second strategy is RNA exosequencing where 
RNA is successively cleaved using polynucleotide 
phosphorylase, whereafter each nucleotide is read 
separately in the nanopore (Ayub et al., 2013). Dual 
RNA-seq of infected single cells together with an 
intracellular bacterial pathogen was demonstrated 
with the latter approach (Hardwick et al., 2011).

While we have reviewed a dual RNA-seq 
approach to dissect the interplay between plants 
and their pathogens, insight into the interaction 
is also possible at the level of proteomics and 
metabolomics (Allwood et al., 2010; Rees et al., 
2015). Protein–protein interaction networks can 
reveal important triggers governing host resistance 
(Wang et al., 2013). We predict that a combination 
of these approaches, together with gene function 
studies, will provide a systems level understanding 
of the interaction biology between the two organ-
isms, which will allow more effective management 
of plant–pathogen duels for plant protection and 
improvement.

Glossary
Biological replicate: Repetition of measurements 
using different samples obtained under the same 
experimental conditions to account for biological 
variance.
Biological variance: Variation between data sets 
obtained from different samples within an experi-
mental group arising from genetic differences or 
environmental influences on gene expression.
Coverage: The average number of reads that repre-
sent any given nucleotide in a reference or de novo 
assembled genome sequence. For a transcriptome 
assembly or expression study, coverage should be 
calculated based on the least expressed transcript.
Dual RNA-seq: A technique that makes use of 
high-throughput next-generation sequencing 
platforms to assess gene expression changes in the 
pathogen and its host simultaneously.
Fragment size: The combined length of the insert 
and the adapters within a sequencing library.
Insert size: The length of the DNA (or RNA) target 
between adapters within a sequencing library.
Library complexity: The number of unique mol-
ecules present within a sequencing library.

Overdispersion: The presence of higher variability 
within a dataset than predicted/accounted for by a 
statistical model.
Poly(A) selection: Selective amplification of 
poly(A) RNA species during library preparation by 
using poly(dT) primers for cDNA synthesis.
Read depth: The average read depth of a sequenc-
ing experiment is the read length multiplied by the 
number of reads, divided by the sum of the size of 
all genes being considered.
Read length: The number of bases sequenced per 
read.
rRNA depletion: Selective removal of the majority 
of ribosomal RNA species during library prepara-
tion.
Sequencing complexity: The number of unique 
molecules sequenced relative to the expected 
number of unique molecules.
Strand-specific library: A double-stranded cDNA 
library where information about which strand rep-
resents the original mRNA has been preserved.
Technical replicate: Repetition of measurements 
using the same sample to account for technical vari-
ance.
Technical variance: Variation between data sets 
obtained from the same sample using the same 
procedure arising from artefacts introduced by the 
process.
Unstranded library: A double-stranded cDNA 
library where information regarding which strand 
represents the original mRNA was not preserved. 
This results from the standard library preparation 
approach where synthesis of double stranded 
cDNA is primed randomly before the addition of 
adaptors.
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