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Abstract
Metagenomics, the application of high-throughput DNA sequencing for surveys of envi-
ronmental samples, has revolutionized our view on the taxonomic and genetic composition 
of complex microbial communities. An enormous richness of microbiota keeps unfolding 
in the context of various fields ranging from biomedicine and food industry to geology. 
Primary analysis of metagenomic reads allows to infer semi-quantitative data describing the 
community structure. However, such compositional data possess statistical specific proper-
ties that are important to consider during preprocessing, hypothesis testing and interpreting 
the results of statistical tests. Failure to account for these specifics may lead to essentially 
wrong conclusions as a result of the survey. Here we present a researcher introduction to the 
field of metagenomics with the basic properties of microbial compositional data including 
statistical power and proposed distribution models, perform a review of the publicly avail-
able software tools developed specifically for such data and outline the recommendations 
for the application of the methods.

Introduction
Microbiota, complex communities consisting of microbial species, appear to inhabit literally 
any environmental niche in the world. Recent advances in molecular genetic techniques 
allowed the study of microbiota in a cultivation-independent way, leading to the discovery 
of enormous diversity. One of the most advanced and widely used techniques is metagen-
omic sequencing: classification and quantification of metagenomic sequences can be used 
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to assess both taxonomic and functional composition of microbiota. However, when a 
researcher is interested in proper statistical assessment of hypothesis regarding the differ-
ences between the samples from different groups or its dependence from multiple factors, 
quantification of metagenomic reads is just an intermediate step. Generally, the specific 
features and problems of analysing metagenomic data are universal whether the focus is 
on microbiota of a subway station, saline lake or host-associated communities. However, 
here we will illustrate these concepts on the example of human microbiota, as it possesses 
particular interest to researchers due to its essential role in a biomedical context.

The human body is a habitat for a great amount of microbes (approximately 1–3% of 
body mass). They play important roles in biological processes that maintain its vital activ-
ity. The microbial community consists of thousands of species, and its structure noticeably 
varies both among subjects and body parts (Levy and Borenstein, 2013; Stein et al., 2013; 
Tyakht et al., 2013; Human Microbiome Project Consortium, 2012). As cultivation and 
examination in vitro of the majority of microorganisms is difficult, metagenomic analysis is 
one of the most common ways to study the human-associated microbial community struc-
ture and functionality.

An important part of metagenomic analysis is testing hypotheses about the associations 
between microbiome structure and some factors. Age, diet type, presence of some disease 
and so on may play the role of such factors in the case of human microbiome research. Fac-
tors may take on discrete or continuous values. Such characteristics as sex, body site and 
stage of the disease represent discrete ones. They allow us to distinguish two or more groups 
to compare structure of their microbiota. While designing the groups and the inclusion/
exclusion criteria for a metagenomic survey, a researcher should make sure that the groups 
are matched and differ only by the selected features. For example, in a case when the micro-
biota of healthy subjects and patients with dysbiosis are compared, then there should be no 
substantial differences in weight, age, sex and other parameters between the groups.

Age, body mass index and drug dosage are the examples of continuous factors. It is 
impossible to distinguish groups in such case. So the researcher’s aim is to obtain the func-
tional dependence of microbiome structure on factor value. A study may aim to explore the 
association of the microbiome with more than one factor at a time. Multifactor analysis is 
useful when several characteristics may contribute to the changes in microbial structure and 
each of them is presumed to have substantial influence. Such analysis attempts to estimate 
the individual impact of each factor.

A common metagenomic study of association between clinical data and microbiome 
composition consists of the following stages (Goodrich et al., 2014):

1 formulation of the aims and experiment design (stating the hypothesis, describing the 
groups of subjects, determining their minimal size, choosing the optimal sequencing 
technology, targeted sequencing depth and methods of experimental data analysis);

2 collecting the required number of microbial samples;
3 metagenomic sequencing of each sample;
4 taxonomic profiling for each metagenome;
5 statistical analysis of the compositional data.

This review describes basic concepts and models of statistical inference of associations 
between microbiome structure and factors of interest, with the main focus on human 
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microbiota. It is intended to serve as an assistance in choosing the correct statistical methods 
for metagenomic analysis realized in R (R Core Team, 2015) and applying them properly 
(stages 1 and 5).

To state the mathematical formulation of the problem it is necessary to get familiar with 
the data format inherent for metagenomics. We will first briefly describe the first steps of 
a metagenomic study from collecting samples to obtaining its taxonomic profile. Next, 
the statistical formulation of the aim of the research and design of an experiment will be 
discussed. Then we will focus on the main steps and specifics of metagenomic statistical 
analysis. The last section contains an overview of the actual and widespread approaches to 
such analysis implemented in R packages.

Preparing data for statistical analysis
Collection of microbiome samples, sample preparation and sequencing, as well as the pri-
mary bioinformatical analysis for taxonomic profiling are complex processes, with each step 
having its own subtleties. A comprehensive description of them is out of scope of this text 
and is described elsewhere (for example, in Goodrich et al., 2014). Here we will outline only 
the essential points.

After collecting the microbiota samples from the individuals under investigation, the 
samples are stored and transported under low temperature and other conditions to prevent 
changes in the structure of microbial community before the sample gets to a laboratory. 
There the DNA is extracted from the samples through a multistage process with the use 
of special reagents. Then a so-called sequencing library is prepared for each sample. The 
obtained libraries are subject to DNA sequencing resulting in thousands to tens of millions 
of short nucleotide sequences (reads) corresponding to the genomes of all microorganisms 
and viruses present in a sample. There are two main types of sequencing: shotgun sequenc-
ing (random sequences for the totality of the genetic material are obtained) or amplicon 
sequencing (reads belong to a fixed gene of each species, most commonly 16S rRNA gene). 
The resulting reads are subject to quality filtering. Then taxonomical classification is per-
formed so each read is put into correspondence with the available taxonomically annotated 
database of microbial genomes or genes. It is also possible to perform a de novo analysis 
without the reference. The result of the taxonomical classification for all reads of a sample 
is a vector of feature abundances. Each element of this vector reveals the number of reads 
related to some feature – taxon, gene or gene group. In the context of 16S rRNA sequenc-
ing, the common type of feature are referred to as operational taxonomic units (OTUs); as 
the concept of OTU is not normally used in ‘shotgun’ sequencing, we will use a microbial 
species as a feature in the text.

‘Shotgun’ sequencing allows us to describe the functional structure of microbial commu-
nity in addition to its taxonomic structure. It shows semiquantitative portrait of genes, gene 
groups or metabolic paths in the community. Currently ‘shotgun’ sequencing is a much more 
costly procedure than the amplicon format. So it is less widespread, albeit it does not give an 
idea about gene structure of a microbiota. In this paper, without loss of generality, we will 
describe methods of statistical analysis on the example of 16S rRNA data. The result of the 
taxonomical classification for all reads of a sample is a vector of feature relative abundance 
values. Each element of this vector reveals a read count related to some feature (microbial 
taxon). The microbial communities are compared via the analysis of these vectors.
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Statistical properties of metagenomic data

Basic steps
As an exhaustive search across all gut microbiotas is not feasible, the statistical analysis is 
based on a representative sample from this entire assembly. The researcher is in charge for 
controlling the validity of the outcome. To identify the changes in microbiota composition 
associated with certain factors, a researcher postulates and then tests a null hypothesis that 
the groups do not differ. For instance, that the observed difference in relative abundance of a 
microbial species between the healthy subjects and patients is just due to chance.

Each feature describing microbial composition (e.g. relative abundance of a certain spe-
cies) can be considered as a random value realized in each individual metagenome. Then 
a null hypothesis is postulated stating that the distribution of this random value is inde-
pendent of the examined factor. Often the differences between distributions are assessed by 
comparing their mean (or median) values, with null hypothesis stating that the parameter is 
equal across the groups.

As a means for hypothesis testing, a test statistic is introduced – a numeric function reflect-
ing the degree of similarity between the samples. Then a P-value is computed – a probability 
that such or a more extreme statistics value can be observed assuming the null hypothesis 
is true. The absolute value of deviation (two-sided test) or deviation in certain direction 
(one-sided test) may be considered. A one-sided test is convenient for experiments with a 
strong a priori-supported direction of the factor influence for example, when assessing the 
deleterious effect of antibiotics on the abundance of sensitive species. One-sided testing 
allows the detecting of changes with a smaller effect given the same significance level. But 
more often the direction of influence is not known or the relative abundance of each of the 
taxa in a community is compared at a time, so, while the abundance of some taxa increases, 
the abundance of the others has to decrease. In such cases, two-sided test is the right choice.

A small P-value means that it is unlikely to obtain two such samples from the same dis-
tribution. If P-value is lower than a defined threshold then the null hypothesis is rejected. 
The threshold value (known as a critical value or a significance level of a test) is not fixed 
absolutely and may vary but it is commonly set to 5% (P < 0.05 corresponds to significant 
differences).

A P-value reflects the chance of type I error – rejecting null hypothesis assuming that it 
is true (‘false discovery’). Importantly, 5% significance does not imply that the probability 
that the null hypothesis is true is 5%. It just means that there is 5% chance to observe these 
differences when the null hypothesis is true. Moreover, the estimate of significance does 
not provide information about the scale of the observed differences. A slight increase in 
levels of a species may be significant but have little impact on the microbial ecology whereas 
large-scale changes might be assessed as insignificant. Therefore, one should be wary when 
basing the conclusions of a metagenomic study on P-value analysis alone (Baker, 2016; Was-
serstein and Lazar, 2016).

In the case of multiple comparisons – for example, when the distribution for each of 
the hundreds of detected microbial species is compared – it is necessary to control for the 
number of ‘false discoveries’. Assuming the critical P-value of 0.05 for each test, we allow 
5% probability of making a ‘false discovery’ – i.e. concluding that the fraction of the taxon is 
significantly different between the groups while in reality it is not. However, the probability 
of making a ‘false discovery’ is much higher: for at least two of the tests, it is 1 – (1 – 0.05) × (
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1 – 0.05) = 0.0975; in three of the tests it is 0.14; and in four it is 0.4. In order to avoid making 
such erroneous conclusions, the P-values should be adjusted for multiple comparisons via 
a dedicated routine, e.g. the Bonferroni method (a rather strict method that also decreases 
the number of ‘true discoveries’) or a more widely used Benjamini–Hochberg method that 
controls false discovery rate (FDR) only among ‘discoveries’. A FDR of 0.05 means that 
approximately 5% of significant tests will be ‘false discoveries’.

While metagenomic researchers commonly control the rate of type I error using P-values, 
they often fail to take into account the type II error – the error of accepting null hypothesis 
in the case when it is wrong: for example, of concluding that the level of a bacterial species 
does not vary significantly between the groups while in fact it does. The respective solution 
is to use the concept of statistical power. This measure characterizes the quality of detecting 
the differences between the groups; its value equals to 1 minus the probability of type II 
error (Table 2.1).

The relation between the P-value and statistical power can be illustrated by an example 
of comparing the abundance of a potential biomarker species between healthy subjects 
and patients with a specific disease. While the null hypothesis is that the abundance values 
for the two groups were sampled from the same distribution, an alternative hypothesis is 
that the samples are different, i.e. the expected levels for the microbiota of control subjects 
and patients are different. Type I error will occur if the researcher decides that the differ-
ences exist while in fact they do not. In such case, a species will be by mistake considered 
a potential microbial biomarker of the disease thus leading to further useless consumption 
of resources to examine in detail the species which is ultimately not involved in the disease.

On the other hand, type II error will happen if a researcher does not detect the strong 
association between the microbial species and the disease – in the case when indeed such 
connection exists – thus missing an important discovery that might result in understanding 
of the pathogenesis mechanism and, potentially, development of novel prediction and treat-
ment approaches.

Obviously, a researcher will attempt to reduce the chances of type I and II errors at the 
same time. However, these rates are related in a way that the decrease of one leads to the 
increase of the other, and vice versa (Fig. 2.1). So one has to find the reasonable balance 
between the two measures depending on the aims of the study. One should not be limited 
only to the control of the significance level, as the low power increases the probability of 
finding the differences that do not exist, given a fixed P-value threshold (Sham and Purcell, 
2014). Therefore, improper control of the power leads to low reproducibility of results.

Table 2.1 Relations between type I and II errors in hypothesis testing. The null hypothesis H0 
states that there are no differences between the two distributions, the alternative hypothesis 
H1, that the distributions are different

Reality
Statistical 
conclusion Error Probability Term

H0 H0 No error 1 – α
H0 H1 Type I error α Significance
H1 H1 No error 1 – β Power
H1 H0 Type II error β
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Statistical power in a metagenomic study is affected by a number of experimental 
parameters. These include the effect size [measure of observed differences caused by the 
factor(s)], the DNA sequencing depth, the level of taxonomical description, the choice of 
the test statistics, the critical value for the type I error probability, the method of multiple 
comparison correction, and the sample size (Hair et al., 2010; La Rosa et al., 2015). The 
dependence of power on some of these parameters is presented in Jonsson et al. (2016), 
Kelly et al. (2015) and La Rosa et al. (2015). The dependence on sample size is especially 
important for metagenomic studies, as the high cost of sequencing is very restrictive. There-
fore, at the stage of experiment planning it is prudent to ensure that the selected sample 
size is sufficient to detect the underlying dependences but is not redundant and that the 
sequencing depth allows to capture the minor community members at the desired level of 
detail. In practice, 80% power threshold is commonly used in biostatistical analysis (La Rosa 
et al., 2012). Details on the choice of power threshold are described elsewhere (Sham and 
Purcell, 2014).

In order to determine the required number of samples for obtaining the desired power 
level, one should proceed from the choice of statistical method, acceptable significance level, 
taxonomic level and expected effect size. The latter parameter can be determined during a 
pilot experiment (when a small subgroup of metagenomes is sequenced) or from published 
data revealing typical effect sizes in similar experiments (such as Kelly et al., 2015; La Rosa 
et al., 2015). It is worth noting that it can possibly be overestimated in experiments with a 
small sample size (Button et al., 2013). A researcher should choose the minimal group size 
allowing to achieve the target level of power. Some of the software packages for statistical 
analysis of metagenomic data offer functions for power calculations specific for the included 
statistical methods. These functions should be applied to pilot data. However, if such func-
tions are not available and the pilot sample size is sufficient, a non-parametric method (e.g. 
permutation-based) should be used to make sure the statistical power is acceptable. When 
choosing the method of analysis, one should particularly pay attention to the validity of 
the assumed parameterization, as the wrong choice may lead to overestimate of power or 
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Figure 2.1 Distribution of the test statistics according to null and alternative hypotheses for 
one-sided Student’s test. The black line denotes significance level, the area of the blue region 
is the probability of a type I error (α) and the area of the red region is the probability of a type II 
error (β). The illustration is based on the analysis of log-transformed data for healthy subjects 
and patients with type 2 diabetes (Egshatyan et al., 2016).
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significance leading to a higher rate of type I or II errors that the researcher expects (Hair et 
al., 2010). The choice of a model will be discussed in detail below.

Specific statistical features of metagenomic data
Metagenomic data possess inherent statistical properties that require a careful approach to 
the choice of statistical analysis methods (Paulson et al., 2013).

Total read count varies between the samples
The first problem is caused by the technical variability of sequencing data volume per sample: 
the total sum of reads may be substantially different. Modern DNA sequencers allow the 
processing of hundreds of samples at a time, but do not guarantee uniform distribution of 
reads across the metagenomes. Metagenomic data are compositional and direct comparison 
of the reads that correspond to a feature in two metagenomes does not give a correct repre-
sentation of the relative abundance of this feature in samples. For example, let 20 reads be 
classified as the taxon in the first sample and 50 in the other one, while the total reads sum 
is 1000 in the first sample and 500 in the second one. Then 2% of the first metagenome – a 
fraction greater than 2% of the second one – correspond to the taxon, although 20 reads are 
less than 50 reads.

There are several ways of solving the problem. The comparison of them is presented in a 
paper by McMurdie et al. (2014). The first way is equalization of the total sum of reads by a 
random rarefaction of the data so that the read count is equal across all samples. However, 
in such case a large fraction of data are being discarded in a wasteful way and the precision 
of measurement is decreased, especially for metagenomes with highest sequencing depth 
(McMurdie et al., 2014). As a result, a high rate of type I and II errors is observed. Above 
all, the random choice of reads decreases the repeatability of an experiment and adds biases 
(McMurdie et al., 2014).

The second approach is normalizing the data. The most straightforward method is to 
divide each component of a feature vector by the total read sum for the sample. One disad-
vantage of such normalization is that the transformed vector loses information about the 
sequencing depth and thus precision of measurements, and therefore the variance cannot 
be correctly estimated. This leads to high level of false positives (McMurdie et al., 2014).

More sophisticated methods of normalization methods implemented in packages for 
metagenomic and differential expression analysis were shown to overcome the problem 
more successfully (McMurdie et al., 2014).

Dependence of the feature abundance variance on the mean value
Another specific property of metagenomic data is that the normalized variance of taxa 
differs among taxa and depends on factors whose association with data is investigated. An 
example of feature variability is presented in Fig. 2.2a. Thus, the property of homoscedastic-
ity (independence of the variance from the factor values) is not fulfilled – however, it is 
required for correct use of many statistical methods, both parametric and non-parametric. 
So one should either resort to specialized statistical tests designed for heteroscedastic data 
or apply a variance-stabilizing data transformation to the data. Common solutions include 
the square-root transformation, arcsine-square-root- and log-transformation paired with 
adding a pseudocount (in order to avoid infinite values) to all taxa ( Jonsson et al., 2016; 
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Figure 2.2 Relation between variance and mean of species relative abundance in logarithmic 
scale. (a) Normalized by the total sum of reads per sample, (b) normalized by the total sample 
sum log-transformed data (with adding one ‘pseudocount’). The scatter plots are constructed 
for the published data on gut microbiota of healthy people and patients with diabetes 
(Egshatyan et al., 2016); the points correspond to 100 randomly selected OTUs.
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Wang et al., 2016). The dependence of variance on the mean value after log-transformation 
is illustrated in Figure 2.2b. It was previously shown (Wang et al., 2016) that a simple means 
comparison of log-transformed data is a powerful method compared with some other para-
metric and non-parametric methods. Regression analysis paired with arcsine-square-root 
transformation was also more powerful compared to the methods that used untransformed 
data. In method comparison ( Jonsson et al., 2016), square-root transformation followed 
by the Student’s test showed results comparable to the results of methods designed for 
metagenomic data.

Normal distribution does not fit well to the metagenomic data
The other specific property of metagenomic data is that the normal distribution implied in 
many statistical tests does not describe this type of data well. First of all, normal distribu-
tion is continuous while the metagenomic sequencing data have discrete nature. Second, 
components of a feature vector cannot be negative. At the same time the mean value of 
taxon abundance is often comparable to its variance and the abundance matrix is sparse 
(has many zero values). For example, in the case of gut microbiota, due to the wide diversity 
of microbial community structures, a typical bacterial species has zero or low abundance in 
microbiota of the majority of people while only a small fraction of the population carry high 
abundance (tens of per cent) of this species. A typical histogram of taxon abundance across 
samples is presented in Fig. 2.3a.

One way of overcoming the problem is to apply non-parametric methods that are not 
based on any underlying distribution. However, their flaw is relatively low sensitivity, which 
leads to the inflated rate of type II error probability (La Rosa et al., 2012).

Another method is transforming the data so that they fit a normal distribution better. 
Partially this problem may be solved by applying the above-mentioned variance-stabilizing 
transformation (Fig. 2.3b), but the scarcity of metagenomic data remains a problem (Paul-
son et al., 2013; Wang et al., 2016) (Fig. 2.3c and d). The quality of the fit can be subsequently 
assessed using the Shapiro–Wilk test of normality.

The third way is to choose a distribution other than normal and apply appropriate 
parametric methods. Often this distribution is based on the modification of a multinomial 
distribution that describes the number of successes in a series of n independent experiments 
with k possible outcomes, each with probability pk,

In the case of metagenomic data, each experiment corresponds to the classification of a 
single read, possible outcomes – to the taxa and the total number of experiments – to the 
sequencing depth. In contrast to the normal distribution, the multinomial one is discrete.

As the number of species in a complex microbial community is high, interactions 
between them are often neglected during statistical analysis and a binomial distribution 
is used for the component-wise description of relative abundance vector. The binomial 
distribution is a restriction of the multinomial for the case of two possible outcomes, 
meaning that a read can be classified as originating from a species or not. At the limit – 
in the case of high sequencing depth – the binomial distribution becomes a continuous 
Poisson distribution. Unlike the normal distribution, the mentioned parameterizations 
do not allow negative values of the random variable. On the other hand, the methods 

pk =1i=1

k∑ .



(c)

nu
m

be
r o

f s
am

pl
es

0.00 0.02 0.04

taxon abundance, %

0.08 0.10 0.12

0
10

20
30

40
50

0.06

(d)

nu
m

be
r o

f s
am

pl
es

0.00 0.05

taxon abundance, %

0.15 0.20

0
10

20
30

40

0.10

nu
m

be
r o

f s
am

pl
es

0 2
taxon abundance, %

6 8

0
5

10
15

20

4

(a) (b)

nu
m

be
r o

f s
am

pl
es

0.0 0.2
taxon abundance, %

0.6 0.8

0
5

10
15

20
25

0.4

Figure 2.3 Typical form of a histogram for the distribution of a single OTU abundance across samples. (a) For the data normalized to 100% for one of 
the major OTUs, (b) for the data log-transformed and then normalized to 100% for one of the major OTUs, (c) for the data normalized to 100% for one of 
the minor OTUs, and (d) for the data log-transformed and then normalized to 100% for one of the minor OTUs. The plots are constructed using 82 gut 
metagenomic datasets of healthy individuals (Egshatyan et al., 2016).
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based on binomial, multinomial and Poisson distributions have recently been shown to 
produce a greater number of false discoveries than normal-based and others (Jonsson et 
al., 2016). Apparently, the effect is caused by a low capability to fit the variance to the data 
independently of the mathematical expectation, as these distributions contain only one 
parameter to fit the data. An alternative is to use mixture distributions, such as univariate 
negative binomial or multivariate Dirichlet-multinomial distributions, that account for 
the overdispersion (McMurdie et al., 2014).

Metagenomic sequencing is a costly experimental approach so commonly there are not 
so many samples to estimate the parameters of a model with high precision. For this reason, 
Bayesian approach is widely applied in metagenomic statistics: additionally to the available 
data, certain a priori knowledge about the distribution is used. If the parameters of the a 
priori distribution are estimated according to the data, the approach is called an empirical 
Bayesian one.

The above-described models are one-dimensional: they are suitable for the description 
of each component (species) of a feature vector describing the composition of a microbial 
community. However, certain models describe the whole feature vector as one random vari-
able. Metagenomic analysis based on such models does not allow us to test if the relative 
abundance of a specific taxon is associated with certain factors but rather if the whole com-
munity structure is associated with them. This approach may be useful to analyse the beta 
diversity between microbial communities.

R packages for statistical analysis of metagenomic 
compositional data
R programming language is widely used for omics-data analysis due to the large number 
of free packages. Here we will describe R packages specifically intended for metagenomic 
analysis: basic methods commonly used for a comparison of two or more groups [on 
the example of their implementation in ALDEx2 package (Fernandes et al., 2014)] and 
advanced approaches based on generalized linear models allowing both continuous and dis-
crete factors [metagenomeSeq (Paulson et al., 2013), edgeR (McCarthy et al., 2012), DESeq2 
(Love et al., 2014), MaAsLin, shotgunFunctionalizeR (Kristiansson et al., 2009)]. Finally, the 
methods for vector-wise rather than component-wise comparison will be introduced [HMP 
(La Rosa et al., 2012), vegan (Oksanen et al., 2012), micropower (Kelly et al., 2015)]. The 
summary of all mentioned packages is presented in Table 2.2.

Component-wise analysis
Comparison of two groups is one of the most common tasks in microbiota analysis. The 
comparison can be paired or unpaired. The paired comparison is applied when each sample 
from one group corresponds to a single sample from the other group of equal size (e.g. sam-
ples from two body parts of the same individual or from the same person before and after 
medication, microbiota of mothers and their children). The unpaired comparison is applied 
for two independent groups, such as healthy subjects versus patients with certain disease or 
vegetarians versus omnivores; the groups may have different size.

Metagenomic profiling provides an extensive portrait of the community displaying 
global species-level composition. For simplicity, interactions between the individual species 
is often ignored and the abundance is compared individually for each of the hundreds of 



Table 2.2 Characteristics of the methods for statistical analysis of metagenomic data discussed in the article

Package Method
Type of 
comparison

Correction 
for varying 
sequencing 
coverage

Approach to 
differences in 
dispersions Parameterization Notes

Power and 
required sample 
size estimation

Two-group 
comparison 
(one discrete 
factor with 
two allowed 
values)

Multiple-group 
comparison 
(one discrete 
factor with 
>2 allowed 
values)

Many 
continuous 
or discrete 
factors

stats Wilcoxon, 
Kruskal–
Wallis, Welch 
and Student’s 
tests

Component-
wise

Should be 
controlled 
manually 
(rarefaction or 
normalization)

Variance stabilizing 
transformation is 
recommended for 
all tests except 
for the Welch 
test designed 
for unequal 
dispersions

Wilcoxon 
and Kruskal–
Wallis test are 
non-parametric, 
Welch and 
Student’s test 
suggest normal 
distribution

Variance stabilizing 
data transformation 
is recommended 
for non-parametric 
methods and 
Student’s test

n.ttest() from 
samplesize 
package for 
Welch and 
Student’s tests; 
https://fedematt.
shinyapps.
io/shinyMB/
and [22,23] 
for unpaired 
Wilcoxon test

+ – –

ALDEx2 Wilcoxon, 
Welch and 
Kruskal–Wallis 
tests, ANOVA

Component-
wise

Each sample 
is substituted 
with Monte 
Carlo samples 
from Dirichlet 
distribution

Monte Carlo 
sampling provides 
more accurate 
estimation of 
the dispersion; 
variance stabilizing 
clr-transformation, 
Welch test is 
valid for data 
with non-uniform 
variance

Wilcoxon 
and Kruskal–
Wallis test are 
non-parametric, 
Welch test 
and ANOVA 
suggest normal 
distribution

Allows accurate 
estimate of the 
significance for small 
sample sizes and 
correct comparison 
of abundance vectors 
after neglecting 
low-abundance taxa

samplesize and 
pwr packages 
for Welch and 
Student’s tests 
and ANOVA; 
https://fedematt.
shinyapps.
io/shinyMB/
and [22,23] 
for unpaired 
Wilcoxon test

+ + +

metagenomeSeq Generalized 
linear model

Component-
wise

Percentile 
normalization 
to avoid 
biases 
caused by 
the preferable 
amplification 
of certain 
nucleotide 
sequences

Variance stabilizing 
logarithmic 
transformation, 
used statistics 
is valid for data 
with non-uniform 
variance

Zero-inflated 
Gaussian 
distribution

Avoids biases caused 
by the preferable 
amplification of certain 
nucleotide sequences; 
designed for sparse 
data inherent for 16S 
rRNA sequencing; 
needs sufficient 
sample size and 
sequencing depth

No + + +

edgeR Generalized 
linear model

Component-
wise

Normalization: 
normalizing 
factors are 
selected to 
minimize 
the log-fold 
changes for 
the majority of 
taxa

Empirical Bayesian 
approach to 
dispersion 
estimation, used 
statistics is valid 
for data with 
non-uniform 
variance

Negative 
binomial 
distribution

Some results suggest 
the method yields too 
many false positives 
caused by too low 
estimate of the 
dispersion

No + + +

DESeq2 Generalized 
linear model

Component-
wise

Normalization: 
normalization 
factors 
take into 
account the 
sequencing 
depth

Empirical Bayesian 
approach to 
dispersion 
estimation, used 
statistics is valid 
for data with 
non-uniform 
variance

Negative 
binomial 
distribution

Provides an empirical 
Bayesian approach to 
effect size estimation

No + + +

HMP Generalized 
Wald-type 
statistics

Community-
level

Should be 
rarefied 
manually

Dirichlet-
multinomial 
distribution, 
used statistics 
is valid for data 
with non-uniform 
variance

Dirichlet-
multinomial 
distribution

Takes into account the 
compositional nature 
of metagenomic data

Is implemented 
in the package; 
the calculations 
of the required 
sample size may 
be performed 
by the wrapper 
https://fedematt.
shinyapps.io/
shinyMB/

+ + –

vegan PERMANOVA, 
ANOSIM

Community-
level

Should be 
rarefied 
manually in 
the case of 
weighted 
metrics

The method is 
not designed for 
unequal variances. 
PERMANOVA 
is more robust 
than ANOSIM 
and some other 
non-parametric 
methods

Non-parametric Takes into account the 
compositional nature 
of metagenomic data

micropower 
package (for 
Jaccard and 
UniFrac metrics)

+ + –



Table 2.2 Characteristics of the methods for statistical analysis of metagenomic data discussed in the article

Package Method
Type of 
comparison

Correction 
for varying 
sequencing 
coverage

Approach to 
differences in 
dispersions Parameterization Notes

Power and 
required sample 
size estimation

Two-group 
comparison 
(one discrete 
factor with 
two allowed 
values)

Multiple-group 
comparison 
(one discrete 
factor with 
>2 allowed 
values)

Many 
continuous 
or discrete 
factors

stats Wilcoxon, 
Kruskal–
Wallis, Welch 
and Student’s 
tests

Component-
wise

Should be 
controlled 
manually 
(rarefaction or 
normalization)

Variance stabilizing 
transformation is 
recommended for 
all tests except 
for the Welch 
test designed 
for unequal 
dispersions

Wilcoxon 
and Kruskal–
Wallis test are 
non-parametric, 
Welch and 
Student’s test 
suggest normal 
distribution

Variance stabilizing 
data transformation 
is recommended 
for non-parametric 
methods and 
Student’s test

n.ttest() from 
samplesize 
package for 
Welch and 
Student’s tests; 
https://fedematt.
shinyapps.
io/shinyMB/
and [22,23] 
for unpaired 
Wilcoxon test

+ – –

ALDEx2 Wilcoxon, 
Welch and 
Kruskal–Wallis 
tests, ANOVA

Component-
wise

Each sample 
is substituted 
with Monte 
Carlo samples 
from Dirichlet 
distribution

Monte Carlo 
sampling provides 
more accurate 
estimation of 
the dispersion; 
variance stabilizing 
clr-transformation, 
Welch test is 
valid for data 
with non-uniform 
variance

Wilcoxon 
and Kruskal–
Wallis test are 
non-parametric, 
Welch test 
and ANOVA 
suggest normal 
distribution

Allows accurate 
estimate of the 
significance for small 
sample sizes and 
correct comparison 
of abundance vectors 
after neglecting 
low-abundance taxa

samplesize and 
pwr packages 
for Welch and 
Student’s tests 
and ANOVA; 
https://fedematt.
shinyapps.
io/shinyMB/
and [22,23] 
for unpaired 
Wilcoxon test

+ + +

metagenomeSeq Generalized 
linear model

Component-
wise

Percentile 
normalization 
to avoid 
biases 
caused by 
the preferable 
amplification 
of certain 
nucleotide 
sequences

Variance stabilizing 
logarithmic 
transformation, 
used statistics 
is valid for data 
with non-uniform 
variance

Zero-inflated 
Gaussian 
distribution

Avoids biases caused 
by the preferable 
amplification of certain 
nucleotide sequences; 
designed for sparse 
data inherent for 16S 
rRNA sequencing; 
needs sufficient 
sample size and 
sequencing depth

No + + +

edgeR Generalized 
linear model

Component-
wise

Normalization: 
normalizing 
factors are 
selected to 
minimize 
the log-fold 
changes for 
the majority of 
taxa

Empirical Bayesian 
approach to 
dispersion 
estimation, used 
statistics is valid 
for data with 
non-uniform 
variance

Negative 
binomial 
distribution

Some results suggest 
the method yields too 
many false positives 
caused by too low 
estimate of the 
dispersion

No + + +

DESeq2 Generalized 
linear model

Component-
wise

Normalization: 
normalization 
factors 
take into 
account the 
sequencing 
depth

Empirical Bayesian 
approach to 
dispersion 
estimation, used 
statistics is valid 
for data with 
non-uniform 
variance

Negative 
binomial 
distribution

Provides an empirical 
Bayesian approach to 
effect size estimation

No + + +

HMP Generalized 
Wald-type 
statistics

Community-
level

Should be 
rarefied 
manually

Dirichlet-
multinomial 
distribution, 
used statistics 
is valid for data 
with non-uniform 
variance

Dirichlet-
multinomial 
distribution

Takes into account the 
compositional nature 
of metagenomic data

Is implemented 
in the package; 
the calculations 
of the required 
sample size may 
be performed 
by the wrapper 
https://fedematt.
shinyapps.io/
shinyMB/

+ + –

vegan PERMANOVA, 
ANOSIM

Community-
level

Should be 
rarefied 
manually in 
the case of 
weighted 
metrics

The method is 
not designed for 
unequal variances. 
PERMANOVA 
is more robust 
than ANOSIM 
and some other 
non-parametric 
methods

Non-parametric Takes into account the 
compositional nature 
of metagenomic data

micropower 
package (for 
Jaccard and 
UniFrac metrics)

+ + –
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taxa resulting in hundreds of statistical tests. Therefore, multiple testing correction is neces-
sary for adjusting the resulting P-values. However, if the study initially aims to examine only 
a single species of interest from the totality of community members and the other species 
are not analysed further, the procedure is not required. The power of the comparison should 
be calculated according to the adjusted significance level.

The common solution for the comparison of the two groups is the Student’s t-test for 
samples from normal distributions with equal variances. As it was mentioned above, this 
method cannot be directly applied to metagenomic data, because of the weak conformance 
to normal distribution and heterogeneous variance. The latter problem may be overcome 
with the use of variance-stabilizing transformation of the feature vector or Welch’s test – 
a generalization of the Student’s test for the case of unequal variances. These approaches 
provide acceptable results for the high-abundance taxa ( Jonsson et al., 2016). The Student’s 
and Welch’s tests for paired and unpaired comparisons are implemented in a standard R 
package stats. The power or needed sample size for such comparison without multiple test-
ing correction can be calculated using samplesize package.

An approach that overcomes the non-normality of the data distribution is the non-
parametric Wilcoxon test. It also has modifications for paired and unpaired comparisons. 
No assumptions about the type of distribution are used for them. This method is also imple-
mented in stats package. The power calculations for Wilcoxon test in case of single-feature 
abundance comparison is described in detail elsewhere (Mattiello et al., 2016; Rahardja et 
al., 2009). An online resource for calculating the required sample size for multiple features is 
available at https://fedematt.shinyapps.io/shinyMB/(Mattiello et al., 2016).

The package ALDEx2 combines a variance-stabilizing transformation, Welch’s and Wil-
coxon tests and an instrument for obtaining a more correct P-value estimate for small sample 
size. In order to compare metagenomes with different sequencing depth, each feature vector 
is associated with a Dirichlet distribution with mean value equal to the normalized feature 
vector. A random vector from this distribution has nonnegative components summing to 1. 
The probability density of Dirichlet distribution is: 

where x = (x1, . . ., xn) is a random vector, α = (α1, . . ., αn) is a feature vector (with an addi-
tional pseudocount of 0.5 added to each component) and B(α) is the multivariate beta 
function. The greater the taxon abundance and the less the whole number of reads for the 
sample, the greater the variance (Fernandes et al., 2014). Substituting the original feature 
vector with several random vectors generated from the corresponding Dirichlet distribution 
leads to a more correct estimation of variance and thus of significance of differences. At 
the next step, centred log-ratio transformation is applied to the obtained random vectors. 
Besides stabilizing the variance, such transformation ensures the proper comparison of two 
components of the same vector (e.g. which of two species is higher in abundance within a 
single community) even if low-abundance taxa are excluded from the study (as it is often 
done) (Fernandes et al., 2014). The transformed abundances may be compared using either 
Wilcoxon or Welch’s tests. For small groups, the authors of the package recommend to use 
Welch’s test, as its power is less sensitive to the sample size, while for the large groups the 
results for the two tests are similar.

f   x1 ,…,xn ; α 1 ,…, αn
( )= 1

B(α)
∏ i=1

n x i
αi−1 ,
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ALDEx2 contains two methods for multiple group comparisons. They allow us to test 
the hypothesis stating that a taxon abundance is equal among all groups against the alterna-
tive hypothesis stating that for at least one of the groups the taxon abundance is different. 
The first method is the non-parametric Kruskal–Wallis test which is a generalization of the 
Wilcoxon test for the case of more than two groups. The second method is the one-way 
ANOVA (analysis of variance) approach that is based on the comparison of inter-group and 
intra-group differences. It is a parametric method that suggests that the transformed data 
are normally distributed. Both ANOVA and Kruskal–Wallis methods require the equality 
of variances in all groups.

The mentioned methods are appropriate only for the studies with discrete factors (e.g. 
disease severity index or country of residence). But it is often necessary to identify the asso-
ciations between the microbial community structure and the factors that take continuous 
values – for example, body mass index, age, drug dosage. One of the approaches is a nominal 
division into groups according to some intervals of the factor’s values to make them discrete. 
For example, age groups can be used instead of the age in years. Then the methods used for 
discrete methods can be implemented.

Another approach that allows both discrete and continuous factor analysis and, more-
over, multifactor analysis is based on generalized linear models (GLMs). Essentially, the 
method suggests that the mathematical expectation of the dependent value (microbial 
composition components) is a function of linear combination of covariates (factors): 
E(y) = g–1(Xβ), where g(y) is a so-called link function which should be defined for the 
model, –1 denotes the inversion of a function, X is a predictor vector, β is a coefficient 
vector that is estimated from the input data, y is a dependent variable and E is a mean. The 
dependent value should correspond to an exponential class of distributions (examples 
include normal, log-normal, Dirichlet, Poisson, binomial or negative binomial). In the 
case of the identity link function and normally distributed random variable, the GLM 
degenerates into a standard linear model. Paired comparison can be performed by includ-
ing N additional binary factors, where N is the number of pairs, with each of the factors 
reflecting if a metagenome belongs to a certain pair. In the case of a GLM, each of the 
null hypotheses states that the coefficient preceding the factor equals zero. It is worth 
noting that such a model is useful when the underlying association between the factor and 
the feature abundance (transformed by link function) is linear indeed. Otherwise, this 
approach is inappropriate and may lead to biased conclusions.

Common function for fitting generalized linear model in R is glm2 (Marschner, 2014). 
Adaptation of such a model to metagenomic data is implemented in metagenomeSeq, MaAs-
Lin and shotgunFunctionalizeR packages. The packages edgeR and DESeq2 for differential 
gene expression analysis based on RNA-seq data also contain implementations of GLM. 
These are widely used in microbiome studies due to the similarity of data format and statis-
tical properties between RNA-Seq and metagenomics: hundreds to thousands of discrete 
features with distributions varying within several orders of magnitude.

In the edgeR package, the dependent variable – relative abundance of a taxon – is described 
by a negative binomial distribution. Between-group comparison is performed using an exact 
test based on this distribution model (in a way similar to a standard t-test). The variance is 
estimated using empirical Bayesian approach: the estimate obtained from the data for indi-
vidual taxon is shrunk to the value assessed across all taxa. The degree of shrinkage depends 
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on the mean value. The edgeR package includes the correction for sequencing depth that 
minimizes the log-fold changes for the majority of the taxa. Several methods for determin-
ing the GLM coefficients β and their significance are available.

The approach implemented in DESeq2 package is similar with a few differences. Besides 
alternative normalization and variance estimation methods, DESeq2 uses an empirical 
Bayesian approach to obtain the effect size. The variance estimate is shrunk towards zero – 
the less abundant the taxon, the stronger the shrinking. The shrinkage also depends on the 
feature variance. This approach helps to avoid a situation when the majority of the features 
differentially abundant in the two groups have low abundance. The methods for estimating 
the significance also differ from the ones in edgeR. DESeq2 tends to make less false positives 
then edgeR. However, unlike the below-described metagenomeSeq package, DESeq2 works 
slowly on large datasets containing 100 or more samples per group – a typical scenario for a 
metagenomic study (Weiss et al., 2015).

The metagenomeSeq package based on GLMs was developed specifically for 16S rRNA 
metagenomic data that were found to be more sparse than the gene expression data. To 
provide the correct comparison of the metagenomes with different library sizes, the taxa 
abundances are normalized by certain percentile determined from the given data. This 
method allows us to resolve the problem of varying OTU-specific PCR amplification effi-
ciency, a known technical artefact. The variance-stabilizing logarithmic transformation is 
applied to the normalized data. The transformed feature abundances are supposed to follow 
a zero-inflated Gaussian distribution, which takes into account the dependence of the set of 
the taxa detected in a sample on the sequencing depth and adjusts data for its sparsity. After 
this correction, the data distribution is closer to the normal type according to Shapiro–Wilk 
test (Paulson et al., 2013). The empirical Bayesian approach implemented in the limma 
(Ritchie et al., 2015) package is used to test the null hypothesis that the linear model coeffi-
cient equals zero and to estimate the significance. The test is based on moderated t-statistics 
test and involves shrunk variance estimate in a way similar to edgeR (Paulson et al., 2013; 
Ritchie et al., 2015).

Benchmarking of various methods on the example of two-groups comparison for both 
simulated and real-world metagenomic datasets showed that metagenomeSeq performed 
better in the terms of AUC (area under curve), especially for the middle- and high-abundance 
taxa (Button et al., 2013; Jonsson et al., 2016). However, the package underestimates FDR 
value, especially for the datasets with low sequencing coverage and sample size, and tends 
to make more false discoveries than other packages ( Jonsson et al., 2016; McMurdie et al., 
2014; Weiss et al., 2015). Thus, taking into account its high speed as compared to other 
methods (Weiss et al., 2015), metagenomeSeq is recommended for the analysis of 16S rRNA 
sequencing data providing both high group size and sequencing depth ( Jonsson et al., 2016; 
McMurdie et al., 2014; Paulson et al., 2013; Weiss et al., 2015).

Generalized linear models for metagenomic data are also implemented in the packages 
MaAsLin and shotgunFunctionalizeR. While only limited information is published on the 
details, the overdispersed Poisson generalized linear model realized in shotgunFunctional-
izeR showed good results on ‘shotgun’ metagenomes ( Jonsson et al., 2016). As for MaAsLin, 
its advantage is a boosting process that rates the factors in the order of contribution to the 
observed differences in microbiota composition – which is useful in the cases when the 
number of the factors is high and it is difficult for a researcher to infer the importance of 
each factor.
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Community-level comparison of microbial communities
The comparison of microbial communities can be conducted not only in the component-
wise manner, but also viewing the community as a whole, taking into account the possible 
interdependence of the relative abundance levels between various bacterial species in 
microbiota. It is reasonable, in the view of many studies pointing out elaborate ecological 
relations between the species within microbiota (Levy and Borenstein, 2013; Stein et al., 
2013). One of such common methods in biostatistics is MANOVA (multivariate analysis 
of variances), a generalization of the ANOVA method for the multivariate case – but its 
application to metagenomic data is limited because it requires the normal distribution 
of taxa abundance levels. A researcher can resort to non-parametric modifications of 
this approach such as ANOSIM [analysis of similarity, function anosim in package vegan 
(Oksanen et al., 2012)] and PERMANOVA (permutational multivariate analysis of vari-
ances, function adonis in the same package). They are also based on the comparison of 
within-group and between-group variances. In the case of metagenomics, the researcher 
may choose specific dissimilarity measures like weighted and unweighted Jaccard dis-
tance or UniFrac. The unweighted metrics are less sensitive to differences in sequencing 
depth between the samples, since they are based only on the presence/absence of a taxon 
in a sample rather than its abundance levels. The methods differ by their approach to the 
variance comparison: ANOSIM compares ranks of variances similar to Kruskal–Wallis 
test, while PERMANOVA compares variance values by estimating the significance via a 
permutation method. A disadvantage of these methods is that they require equal within-
group variances – however, usually this is not the case for metagenomic data (Warton et 
al., 2012). PERMANOVA was shown to be more robust to the failure of this restriction 
than ANOSIM (Anderson and Walsh, 2013). R package micropower provides functions 
for statistical power calculations for PERMANOVA based on weighted and unweighted 
Jaccard distance as well as UniFrac.

A parametric approach to the problem of multivariate group comparison is implemented 
in package HMP. It employs a generalized Wald-type statistics to compare the estimates 
of statistical model parameters. The Dirichlet–multinomial distribution is used to model 
the vector abundance across each group. It is a combination of multinomial and Dirichlet 
distributions. Similarly to the binomial and Poisson distributions, the multinomial one 
does not provide an instrument for independent estimation of both mean and variance. 
The Dirichlet-multinomial distribution is able to avoid this flaw, as it provides an over-
dispersion parameter that can be derived independently of the data; in the case of the zero 
overdispersion it coincides with the multinomial distribution. It is shown in a paper by La 
Rosa et al. (2012) that this approach is indeed better to describe the metagenomic data. 
The parameters of the model are estimated with the method of moments or the maximum 
likelihood method. There is no instrument for correct comparison of samples with different 
sequencing depth in HMP, so one should be careful with the data preprocessing. Package 
HMP allows power calculations. The wrapper for the sample size definition is available at 
https://fede.shinyapps.io/shinyMB/ (Mattiello et al., 2016).

Conclusions
It is important to emphasize that statistical analysis should be thought of at the very begin-
ning of a metagenomic study, before the sample collection and sequencing procedures. 
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Proper balance between the number of the samples and sequencing depth will lead to high 
statistical power and subsequently the results of the study will be more valuable to the sci-
entific community. Preliminary in silico experiments with the published metagenomes in 
similar format and microbiota type as well as on simulated data contribute to the success of 
the analysis.

The choice of a package for a specific problem in a metagenomic survey depends on sev-
eral conditions: paired or unpaired design, continuity of factors values, component-wise or 
vector comparison, the need for power control, suggested sample size and sequencing depth. 
First of all, it is needed to formulate the aim of comparison – is the researcher interested in 
the component-wise analysis or in beta-diversity among groups? The packages ALDEx2, 
metagenomeSeq, edgeR, DESeq2, MaAsLin and overdispersed model in shotgunFunctionalizeR 
are designed for the former task, while HMP and PERMANOVA coupled with micropower 
package may be used for the latter. For the case of continuous factors or multifactor analysis, 
the models based on generalized linear model are recommended (metagenomeSeq, edgeR, 
DESeq2, MaAsLin and overdispersed model in shotgunFunctionalizeR). In the case of low 
number of samples, the DESeq2 package is recommended, while for larger sample sizes and 
deeper sequencing metagenomeSeq is preferable due to higher performance (Weiss et al., 
2015). The ALDEx2 package is suitable for multiple group comparison for the small sized 
groups, as it is more accurate in significance estimates. The existing evidence suggests that 
methods based on binomial, multinomial and Poisson distributions are not appropriate 
for metagenomic statistical evaluation due to a great number of false discoveries. Overall, a 
researcher should perform an exploratory analysis to check if the distributions for the par-
ticularly analysed dataset conform to the parameterization used by the package of choice, 
as it greatly influences the accuracy of the results. If the quality of model fit is low, the non-
parametric methods, such as Wilcoxon test, Kruskal–Wallis test and PERMANOVA should 
be used.
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