Secretion of Mouse-Metallothionein by Engineered E. coli Cells in Metal-Enriched Culture Media

NeusCols, KirstineRoepstorff, RoserGonzález-Duarte and SilviaAtrian*

Departament deGenètica, Facultad deBiología, Universitat deBarcelona, 08028-Barcelona, Spain

Abstract

Heterologous Escherichia coli expression systems were designed and assayed for the synthesis of functional mouse metallothionein (MT) as a secreted fusion protein. MT secretion was compared among different systems, and the optimum vector/host/medium combination was tested for metal removal. In this case, the Cu content of the medium decreased by up to 34% after growth of recombinant bacteria. The potential use of these genetically-engineered bacteria for water bioremediation is discussed as an alternative to cytoplasmic MT or membrane-bound MT heterologous expression systems.

Excessive heavy-metal accumulation and circulation in the biosphere are important environmental and health concerns, due to the toxicity both of essential (Cu, Cr, Zn, Mn, Fe, Ni, Mo) and xenobiotic metals (Cd, Pb, Hg) at increased levels of bioavailability (Nriagu et al., 1988). MT are small, cysteine-rich proteins that exhibit a high, broad heavy-metal binding capacity and extreme conformed cluster stability (Kägi, 1993). Obviously, they became the evident target for protein engineering schemes that aimed at metal chelation for bioremediation purposes. To this end, several genetic engineering approaches were developed (i) in order to increase the metal uptake of native bacteria by surface display, either of synthetic peptides or of MT molecules (Sousa et al., 1996, 1998; Valls et al., 1998, 2000; Mejáre et al., 1998; Kotbra et al., 1999 a and b); (ii) to design metal-specific bioaccumulating microorganisms (Chen et al., 1997); and (iii) to synthesize recombinant mammalian MT for further biotechnological use (Brower et al., 1997; Cols et al., 1997; Bofill et al., 1999; Pazirandeh et al., 1999). However, the possibility of engineering bacteria for MT secretion, and the characterization of the corresponding protein and protein-metal aggregates have remained unexplored. Protein secretion (i.e. export to the culture medium of recombinant proteins) is the least developed and most empirical area in E. coli/heterologous expression methodology. This is mainly due to the specialized export mechanisms underlying secretion of the few extracellular E. coli proteins, and to the important barrier that the outer-membrane of Gram-negative bacteria represents (Uhlen et al., 1992; Pugsley, 1993). Despite these drawbacks, and the singular structural features of MT, we successfully constructed two E. coli expression systems able to secrete MT as a carboxy-terminal fusion to two IgG binding domains of the Staphylococcus Protein A (Z domain). By means of the Protein A- or the OmpA-signal peptides, the fusion protein was successfully secreted into the culture medium, from which it could be readily purified and characterized. The decrease in copper concentration attributable to the growth of the engineered E. coli cells was quantified.

E. coli ZZ-MT Secretion Led by the Protein A Signal Peptide

The mouse MT-1 cDNA was amplified from the previous construct pGEX-4T-1-MT (Cols et al., 1997) by PCR and subcloned into the expression vector pEZZ-18 (Amersham-Pharmacia) to yield the recombinant plasmid pEZZ-MT. pEZZ-18 contains several regions derived from the Staphylococcus Protein A gene that were proven to be functional in E. coli cells: the constitutive promoter and sequence encoding for the signal peptide and two Z domains (Nilsson et al., 1990; Uhlen et al., 1990). To assess ZZ-MT secretion, E. coli HB101 cells (sup E44 hsdS20 recA13 ara-14 proA2 lacY1 galH2 rpsL20 xyl-5, inti-1) transformed with pEZZ-MT were grown in 20 ml of complete Luria-Bertani (LB) medium, supplemented with 100 µg/ml of ampicillin and 300 µM ZnCl2, for 16 hours at 37°C. After growth, the medium was freed from cells by centrifugation at 3,500 g in order to analyze the secreted products. The preparation was concentrated to one tenth of the initial volume by use of 3kDa Centriprep (Amicon) membranes. From the same experiment, periplasmic proteins were obtained by the osmotic shock of pelleted cells (Nilsson et al., 1990), and the remaining spheroplasts were sonicated in PBS (phosphate-buffered saline, 10mM sodium phosphate (pH 7.4), 150 mM NaCl, 3mM KCl) in order to extract soluble cytoplasmic proteins. Preparations from the three compartments were electrophoresed on SDS-12.5% polyacrylamide gels (PAGE) (Laemmli, 1970), which were stained with Coomassie Blue R-250. From the PAGE results, it was clear that transformed cells synthesized and secreted a protein of the size expected for the processed ZZ-MT fusion, i.e. 20.7 kDa (data not shown). When the culture medium obtained from the previous experiment was fractionated through IgG-Sepharose affinity chromatography, the reported 20.7 kDa-protein was recovered after elution with 0.5 M AcOH (pH 3.4), indicating that the major product secreted by recombinant cells corresponded to the ZZ-MT fusion. These results confirmed the feasibility of the secretion of an engineered MT by E. coli cells. However, two main drawbacks prompted us to design an alternative expression system: the constitutive synthesis of the recombinant protein, and the fact that
Further Reading

Caister Academic Press is a leading academic publisher of advanced texts in microbiology, molecular biology and medical research. Full details of all our publications at caister.com

- MALDI-TOF Mass Spectrometry in Microbiology
 Edited by: M Kostrzewa, S Schubert (2016)
 www.caister.com/malditof

- Aspergillus and Penicillium in the Post-genomic Era
 Edited by: RP Vries, IB Gelber, MR Andersen (2016)
 www.caister.com/aspergillus2

- The Bacteriocins: Current Knowledge and Future Prospects
 Edited by: RL Dorfl, SM Roy, MA Rile (2016)
 www.caister.com/bacteriocins

- Omics in Plant Disease Resistance
 Edited by: V Bhadauria (2016)
 www.caister.com/opdr

- Acidophiles: Life in Extremely Acidic Environments
 Edited by: R Quatrini, DB Johnson (2016)
 www.caister.com/acidophiles

- Climate Change and Microbial Ecology: Current Research and Future Trends
 Edited by: J Marxsen (2016)
 www.caister.com/climate

- Biofilms in Bioremediation: Current Research and Emerging Technologies
 Edited by: G Lear (2016)
 www.caister.com/biorem

- Microalgae: Current Research and Applications
 Edited by: MN Tsaloglou (2016)
 www.caister.com/microalgae

- Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives
 Edited by: H Shirotani, A Sakudo (2016)
 www.caister.com/gasplasma

- Virus Evolution: Current Research and Future Directions
 Edited by: SC Weaver, M Denison, M Roosainck, et al. (2016)
 www.caister.com/virus evolution

- Arboviruses: Molecular Biology, Evolution and Control
 Edited by: N Vasilakis, DJ Guibler (2016)
 www.caister.com/arbo

- Shigella: Molecular and Cellular Biology
 Edited by: WD Picking, WL Picking (2016)
 www.caister.com/shigella

- Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
 Edited by: AM Romani, H Guasch, MD Balaguer (2016)
 www.caister.com/aquaticbiofilms

- Alphaviruses: Current Biology
 Edited by: S Mahalingam, L Herrero, B Herring (2016)
 www.caister.com/alphaviruses

- Thermophilic Microorganisms
 Edited by: F Li (2015)
 www.caister.com/thermophile

- Flow Cytometry in Microbiology: Technology and Applications
 Edited by: MG Wilkinson (2015)
 www.caister.com/flow

- Probiotics and Prebiotics: Current Research and Future Trends
 Edited by: K Venema, AP Carmo (2015)
 www.caister.com/probiotics

- Epigenetics: Current Research and Emerging Trends
 Edited by: BP Chadwick (2015)
 www.caister.com/epigenetics2015

- Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications
 Edited by: A Burkovski (2015)
 www.caister.com/cory2

- Advanced Vaccine Research Methods for the Decade of Vaccines
 Edited by: F Bagnoli, R Rappuoli (2015)
 www.caister.com/vaccines

- Antifungals: From Genomics to Resistance and the Development of Novel Agents
 Edited by: AT Coste, P Vandeputte (2015)
 www.caister.com/antifungals

- Bacteria-Plant Interactions: Advanced Research and Future Trends
 www.caister.com/bacteria-plant

- Aeromonas
 Edited by: J Graf (2015)
 www.caister.com/aeromonas

- Antibiotics: Current Innovations and Future Trends
 Edited by: S Sánchez, AL Demain (2015)
 www.caister.com/antibiotics

- Leishmania: Current Biology and Control
 Edited by: S Adak, R Datta (2015)
 www.caister.com/leish2

- Acanthamoeba: Biology and Pathogenesis (2nd edition)
 Author: NA Khan (2015)
 www.caister.com/acinthamoeba2

- Microarrays: Current Technology, Innovations and Applications
 Edited by: Z He (2014)
 www.caister.com/microarrays2

- Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications
 Edited by: D Marco (2014)
 www.caister.com/n2

Order from caister.com/order
translocation of ZZ-MT across the outer membrane could not be reproduced in larger scale (fermentator) cultures, in which the peptide systematically remained within the periplasmic space.

E. coli ZZ-MT Secretion Led by the OmpA Signal Peptide

Plasmid pIN-III-OmpA3 (Ghrayeb et al., 1984) contains an isopropyl-1-thio-β-D-galactopyranoside (IPTG) inducible

<table>
<thead>
<tr>
<th>kDa</th>
<th>40</th>
<th>31</th>
<th>21.5</th>
<th>14.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYT<sub>R</sub></td>
<td>PER<sub>R</sub></td>
<td>M<sub>R</sub></td>
<td>M′<sub>R</sub></td>
<td>M<sub>R</sub></td>
</tr>
</tbody>
</table>

Figure 2. Localization of the ZZ-MT fusion in protein extracts and culture medium of pIN-III-ompA-MT transformed BL21 cells (R) and non-recombinant controls (NR). Overnight cultures were diluted 1/10 in fresh medium (20 ml) containing 100 µg/ml ampicillin, induced after 2 h with 1mM IPTG, supplemented with 50 µM ZnCl₂ after an additional half hour and grown for a further 18 h. The culture medium was subsequently fractionated. Proteins were detected in Coomassie Blue-stained SDS-PAGE gels. CYT: cytoplasm; PER: periplasm; M: culture medium, tenfold concentrated, M′: medium in a replica assay. M_R: culture medium of non-recombinant cells. The location of the ZZ-MT fusion is indicated by arrows.

lpp-lac promoter, controlling the expression of cloned cDNA fused in frame to the OmpA-signal-peptide encoding sequence. Although initially designed for transport to periplasm (Hsiung et al., 1986), leading secretion of recombinant small proteins has been shown to be useful (Molina et al., 1992). To assay MT secretion in this system, the region coding for the ZZ-MT fusion was PCR-amplified from the previous pEZZ-MT construct and ligated into pIN-III-OmpA3, rendering the recombinant pIN-III-ompA-MT plasmid (Figure 1). Correct insertion orientation was first verified by restriction analysis, positive clones subsequently being subjected to DNA sequencing (ABI377 Applied Biosystems Automatic Sequencer). E. coli JM105 (thi rpsL endA sbcB15 hasRD4 Δ[lac-proAB] F"[traD36 proAB lacF lacAM15]) was used for cloning procedures, while five additional strains were transformed with pIN-III-ompA-MT for expression assays: HB101, the same strain previously used with the pEZZ-MT plasmid; the protease deficient strain BL21 (F" dcm ompT lacIq Δ(mtl-1); and the three following isoegenic strains: UT3000 (F" ara-14 leu-B6 azi-6 lacY1 proC14 tsa-67 entA403 trpE38 rbsD1 rpsL109 xyl-5 mtl-1 thi-1), UT5600 (UT3000 ΔompT-fepC266) (Elish et al., 1988) and JK321 (ΔompT proC leu-6 trpE38 entA zih12::Tn10 Δsba::kan) (Jose et al., 1996). Different culture media - LB, MJS (12.5 mM HEPES pH 7.1, 50 mM NaCl, 20 mM NH₄Cl, 1mM KCl, 1mM MgCl₂, 0.1 mM CaCl₂, 0.05 mM MnCl₂, 0.8% (wt/vol) casaminoacids, and 0.4% (vol/vol) glycerol) and M9CAS (6 mg/ml Na₂PO₄, 3 mg/ml K₂HPO₄, 1 mg/ml NH₄, 0.5 mg/ml NaCl, 0.24 mg/ml MgSO₄, 0.01 mg/ml CaCl₂, 0.001 mg/ml thiamine, 2 mg/ml casaminoacids, 0.2% glycerol)- were also assayed, due to the dependence of protein secretion upon culture conditions (Molina et al., 1992; Agrwal et al., 1993) and to the precipitation sometimes observed when metal salts

Figure 1. Cloning of the ZZ-MT-encoding construction in the pIN-III-OmpA3 expression vector. To construct the pEZZ-18-MT plasmid, the mouse MT-1 cDNA had previously been amplified from pGEX-4T-1-MT (Cols et al., 1997) using the 5′CCCGGGCACACTTTGGAACAGAGCC3' (upstream) and 5′CCCGGGCCCAAGCTT TCAGGCACAGC3' (downstream) primers to generate BanHII and HindIII flanking restriction sites. After digestion with these enzymes, the cDNA fragment was inserted into the pEZZ-18 vector. In order to generate the pIN-III-ompA3-MT plasmid, the region encompassing the ZZ-MT construct was amplified from pEZZ-MT, using the specific oligonucleotides shown in the figure, which generated flanking HindIII restriction sites. The HindIII-digested amplified fragment was subsequently subcloned into the pIN-III-ompA3 vector. Restriction sites in the oligonucleotide sequences are indicated by bold type.
Secretion of Mouse-Metallothionein by E. coli Cells

Figure 3. SDS-PAGE analysis of the proteins secreted to the culture medium (20 ml) by three isogenic strains transformed with pIN-III-ompA-MT: lanes 2 to 4: JK321 (OmpT+ DsbA+); lanes 5 to 7: UT5600 (OmpT+ DsbA+); and lanes 8 to 10: UT2300 (OmpT+ DsbA+). Lane 1: molecular weight markers. Lanes 2, 5 and 6: before induction (t=0 h); lanes 3, 6 and 9: t=4 h. after induction; lanes 4, 7 and 10: t=18 h. after induction. The location of the ZZ-MT fusion is indicated by arrows.

were added. In this set of experiments, overnight cultures were diluted 1/10 in 20 ml of fresh medium containing 100 µg/ml ampicillin, induced after 2 h with 1mM IPTG, supplemented with ZnCl₂ or CuSO₄ at 50 or 150 µM after an additional half hour, and grown for a further 18 h. Secreted, periplasmic and cytoplasmic protein extracts from three time lapses - 0 h, 4 h and 18 h - were prepared and analyzed as described for the pEZZ system.

HB101 and BL21 were the first strains assayed for ZZ-MT secretion in this system. Among all medium/strain combinations, a secreted product of 20.7 kDa, presumably ZZ-MT, was observed when transformed BL21 cells were grown in M9CAS medium (Figure 2, lane M₀). Conversely, in HB101 transformants, the recombinant protein remained intracellular, despite the positive results previously obtained with the pEZZ-MT construct. A deeper analysis of ZZ-MT secretion by BL21/ZZ-MT revealed a puzzling pattern, as two clear bands, not present in control cell cultures (BL21 ompA), were always detected. One of these had the expected size for ZZ-MT, 20.7 kDa, the other corresponded approximately to 31 kDa (Figure 2, lane Mₙ). Both proteins contained Z domains, as they were invariably co-purified by IgG affinity chromatography. Furthermore, both were recognized by goat anti-rabbit-IgG (GAR) and rabbit anti-mouse-IgG (RAM) antibodies complexed to peroxidase (Nordic, at 1:3000 dilution) in Western blots carried out after protein electroblotting to polyvinylidene difluoride (PVDF) membranes (Millipore) blocked with 10% skim milk/ PBS and developed with 0.05% diaminobenzidine tetrahydrochloride (Sigma) and 3% hydrogen peroxide (data not shown). N-terminal sequencing analysis of these protein bands, isolated by SDS/PAGE separation and transferred onto PVDF membranes, was performed on an Applied Biosystems Procise Sequencer. Results confirmed that in both cases the protein was ZZ-MT, from which the OmpA signal peptide had been correctly processed.

Analysis of the periplasm/cytoplasm protein extracts of the BL21 producing cells revealed that only the 20.7-kDa band was present in these compartments (Figure 2, lanes CYTᵣ and PERᵣ). Repeated secretion assays suggested an exchange between the 20.7 kDa and 31 kDa bands, supporting the hypothesis that the major band (of unexpected size) could be due to some post-translational modification of the ZZ-MT protein possibly related to its release into the supernatant environment. Although the minor band was more often predominant, in some cases the 31 kDa product was unexpectedly favoured (Figure 2, lane Mₙ). On the assumption that both secretion products shared the same composition, we made many attempts to find experimental conditions that would influence the recovery of ZZ-MT as two distinctly migrating forms. Increasing concentrations of β-mercaptoethanol and SDS in the sample buffer, addition of urea 8M in the media preparations, and PAGE separations in non-denaturing conditions were assayed, but always with negative results. Gel filtration FPLC chromatography (Superdex-75, Amersham-Pharmacia) was equally unsuccessful, as both molecules invariably co-eluted in the same fractions.

The high cysteine content of MT led us to the hypothesis that the 31 kDa band could correspond to oxidized ZZ-MT peptides formed by intramolecular disulfide bridging during the periplasm/outer membrane step, and which could not be stable in the presence of all the denaturing agents assayed. To shed light onto this subject, the influence of DsbA, the major E. coli disulfide bond-forming enzyme, was investigated by transformation of the OmpT⁺ DsbA⁺ strain JK321 with pIN-III-ompA-MT. Controls were the OmpT⁺ DsbA⁺ and OmpT⁺ DsbA⁺ isogenic strains, UT5600 and UT2300, respectively. Secretion of ZZ-MT was obtained with all the strains except for HB101, probably due to certain genetic background incompatibility. The 20.7 kDa-band was invariably detected, but the presence and relative significance of the 31 kDa-band was clearly strain-dependent (Figure 3). We were able to draw interesting observations from these results. First, that the expected ZZ-MT form (20.7 kDa) is secreted in the UT2300 genetic background independently of the OmpT/DsbA host cell genotype (Figure 3, lanes 3, 4, 6, 7, 9 and 10). Second, that the 31-kDa form appears as a secretion by-product only in the DsbA⁺ cells (Figure 3, lanes 6, 7, and 9), which are able to catalyze disulfide bond formation, and therefore that this form is probably due to an oxidized conformation of ZZ-MT. Finally, that in OmpT⁺ cells, the unexpected 31
The Metal Binding Functionality of Secreted ZZ-MT Fusion. Copper Removal Studies

Copper (as CuSO₄ salt) was the metal most readily dissolved in the M9CAS medium, which prompted us to consider its use in the quantification of the metal removal capacity of the pIN-III-OmpA-MT/BL21 system. To this end, 20 ml cultures of pIN-III-OmpA-MT/BL21, as well as controls for BL21 cells transformed with the non-recombinant plasmid, were processed following the protocol shown in Figure 4. Special care was taken to prevent non-specific metal binding to the IgG Sepharose matrix. OD₆₀₀ measurements confirmed an equivalent growth rate for both cultures. Inductively-Coupled-Plasma-Absorption-Emission-Spectrometry (ICP-AES) measurements were carried out in Thermo Jarrell Ash, Polyscan 61E, at 182.0 nm for S and 324.7 nm for Cu (Bongers et al., 1988). The sulfur content of the recovered protein indicated a yield of ZZ-MT secretion of 8 mg/l culture. Copper results indicated that cells secreting recombinant ZZ-MT caused a decrease of 18% and 34.4% of the initial copper content of medium supplemented with 50 µM and 150 µM Cu²⁺, respectively (Table 1). Growth of control cells invariably decreased the initial copper concentration by 5%, possibly due to the inherent metabolic uptake of this metal. Measurements of copper bound to the purified ZZ-MT protein (Table 1) confirmed that

Table 1. Copper removal by pIN-III-ompA-MT-transformed BL21 cells, expressing ZZ-MT peptide, after 18 hours of growth in M9CAS media containing 50 or 150 µM CuSO₄, and control non-recombinant cells grown in the same conditions.

<table>
<thead>
<tr>
<th>Copper added</th>
<th>Control cells Metal removed</th>
<th>Cells with ZZ-MT Copper bound to ZZ-MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50µM</td>
<td>5.1% (127 µg/l) 18% (470.8 µg/l)</td>
<td>3 Cu(II)ions/molecule</td>
</tr>
<tr>
<td>150µM</td>
<td>5.64% (444 µg/l) 34% (2679 µg/l)</td>
<td>9 Cu(II)ions/molecule</td>
</tr>
</tbody>
</table>
synthesis and secretion of the recombinant protein were responsible for the decrease in copper concentration. These results are consistent with Cu-MT aggregation taking place inside the secreting cells, rather than in the medium, since copper binds to MT as Cu(I) and the reduction of the supplemented Cu(II) to Cu(I) only proceeds inside cells. This also agrees with the removal of some metal ions for the DsbA+ cells in the periplasm, previously postulated, and is also consistent with the reduced efficiency of external MT membrane-bound systems reported for copper removal in comparison with cadmium or zinc removal (Sousa et al., 1996; Kotbra et al., 1999 a and b).

We report for the first time the successful synthesis of mammalian MT as a functional E. coli-secreted protein. The high cysteine-content of this peptide and the peculiar conformation of its metal clusters are both features that challenged the feasibility of this recombinant synthesis. Unlike cytoplasmic-MT or membrane-bound-MT synthesising bacteria, secreting micro-organisms do not become self-saturated with the recombinant protein, thus allowing non-restricted synthesis of the chelating agent. Although our results were obtained at an analytical level, and are therefore not suitable to direct biotechnological application, further studies to broaden the metal-binding capacity of this system may contribute to new bioremediation schemes.

Acknowledgements

The authors are indebted to Dr. M. Inouye (University of Medicine and Dentistry of New Jersey, Piscataway, U.S.A.) (pIN-III-OmpA3 vector) and to Dr. V. de Lorenzo (Centro Nacional de Biotecnología, C.S.I.C., Madrid, Spain) (E. coli UT2300, UT5600 and JK321 strains) for kindly providing the DsbA+ cells in the periplasm, previously postulated, and to Dr. V. de Lorenzo (Centro Nacional de Biotecnología, C.S.I.C., Madrid, Spain) (pIN-III-OmpA3 vector) and to Dr. V. de Lorenzo (Centro Nacional de Biotecnología, C.S.I.C., Madrid, Spain) (E. coli UT2300, UT5600 and JK321 strains) for kindly providing the DsbA+ cells in the periplasm, previously postulated, and is also consistent with the reduced efficiency of external MT membrane-bound systems reported for copper removal in comparison with cadmium or zinc removal (Sousa et al., 1996; Kotbra et al., 1999 a and b).

We report for the first time the successful synthesis of mammalian MT as a functional E. coli-secreted protein. The high cysteine-content of this peptide and the peculiar conformation of its metal clusters are both features that challenged the feasibility of this recombinant synthesis. Unlike cytoplasmic-MT or membrane-bound-MT synthesising bacteria, secreting micro-organisms do not become self-saturated with the recombinant protein, thus allowing non-restricted synthesis of the chelating agent. Although our results were obtained at an analytical level, and are therefore not suitable to direct biotechnological application, further studies to broaden the metal-binding capacity of this system may contribute to new bioremediation schemes.

Acknowledgements

The authors are indebted to Dr. M. Inouye (University of Medicine and Dentistry of New Jersey, Piscataway, U.S.A.) (pIN-III-OmpA3 vector) and to Dr. V. de Lorenzo (Centro Nacional de Biotecnología, C.S.I.C., Madrid, Spain) (E. coli UT2300, UT5600 and JK321 strains) for kindly providing the plasmids and bacterial strains. Protein sequencing has been generously performed by Ella Cederlund, in Prof. Hans Jörnvall’s laboratory (Karolinska Institutet, Stockholm, Sweden). The authors acknowledge the Serviés Científico-Tècnics, Universitat de Barcelona, for allocating instrument project #BIO2000-0910 and the EU contract #BIO4-CT97-2123.

References

