ATPase and GTPase Activities Copurifying with GTP-Binding Proteins in *E. coli*

Abu Sayed¹, Shin-ichi Matsuyama¹,², Koichi Inouye, Janivette Alsina, Feng Cai, Jingqiu Chen and Masayori Inouye*

Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
¹These authors contributed equally to this work.
²Present address: Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032 Japan

Abstract

Intrinsic GTPase activity of GTP-binding proteins plays the vital role in regulating the downstream activation pathway. We examined the GTP and ATP hydrolyzing (NTPase) abilities of various bacterial and human GTP-binding proteins under different metabolic conditions. Two metabolic components, acetate and 3-phosphoglyceric acid (3-PG), have shown significant stimulatory action on NTPase activity of G-protein preparations. Acetyl phosphate and 2,3-bisphosphoglyceric acid (2,3-BPG) blocked these stimulations. From gel filtration analyses, we have determined two fractions containing metabolite-inducible NTPase activities which are independent of GTP-binding protein enzymatic actions. Therefore, one should be cautious when NTPase activity is examined in a buffer containing acetate often used for NTPase assay.

GTP-binding proteins are often regarded as the "molecular switches" involved in the regulation of cell growth, differentiation, and vesicular transport among other processes (Bourne *et al.*, 1991; Boguski and McCormick, 1993). It is widely accepted that these proteins exhibit an intrinsic GTPase activity that limits the lifetime of the GTP-bound complex. GTPase-activating proteins (GAP) which are specific for the various members of the GTP-binding protein family accelerate this GTPase activity.

Era, an essential *E. coli* G-protein, was originally identified as a sequence homologue of yeast Ras (Ahn *et al.*, 1986; March *et al.*, 1988). Though it has been shown to be associated with vital cellular functions (Lerner and Inouye, 1991; Britton *et al.*, 1998; Sayed *et al.*, 1999), the function of Era still remains elusive. No factors that modulate Era GTPase in a manner similar to the GAPs have been identified in *E. coli*. During one of our attempts to identify a possible GTPase accelerating factor (like GAP or GTPase activating protein for Ras family proteins) for *E. coli* Era GTPase, we observed a high GTPase activity (approximately 1700 units; for simplicity 1 unit is defined as one mmol GTP or ATP hydrolyzed per min per µg of various protein preparations used in this study) in a buffer containing 10 mM potassium acetate in 25 mM Tris-HCl, pH 7.5, 5 mM MgCl₂, 1 mM DTT and 10 µM [γ-³²P]GTP (NEN Life Science Products). However, when acetate was omitted (or replaced with 10 mM potassium chloride) from the reaction buffer, only a weak GTPase activity (~3-fold at 10 mM 3-PG) was observed.

Since acetate is a major component in *E. coli* energy metabolism, we consequently have examined all of the other significant components of metabolic pathways, i.e., each intermediates of glycolysis, TCA cycle, 20 amino acids, aminolevulinic acid, porphyrin, FAD, NADH, NADPH, creatine phosphate, riboflavin, pyridoxine ribonucleotides, Ap4A, etc. In addition to the above effect of acetate, only 3-phosphoglyceric acid (3-PG) showed some effect on the stimulation (~3-fold at 10 mM 3-PG) of GTPase activity as determined by the release of free [γ-³²P]Pi. Quite unexpectedly, a high amount of free [γ-³²P]Pi was also observed when [γ-³²P]ATP, instead of [γ-³²P]GTP, was included in the above reaction containing 10 mM acetate or 10 mM 3-PG. In the absence of such metabolic factors, no notable ATPase activity was detected in the Era sample. Furthermore, the induction of NTPase (ATPase and GTPase) was dependent on the concentrations of acetate and 3-PG (Figure 1). While screening for an inhibitor of...

Received December 13, 1999; accepted January 17, 2000.
*For correspondence. Email inouye@umdnj.edu; Tel. (732) 235-4115/4540; Fax. (732) 235-4559/4783.

© 2000 Horizon Scientific Press

Figure 1. ATPase and GTPase activities of Era preparations measured at different concentrations of potassium acetate or 3-PG. The reactions were performed for 10 min at 37°C as described in the text. The reaction was stopped by the addition of 6% (w/v) activated charcoal, centrifuged at 10,000xg and free [γ-³²P]Pi in the supernatant was measured in a liquid scintillation counter (LKB). Circles represent ATPase while triangles represent GTPase. Open and filled symbols depict NTPase activities in the presence of 3-PG and acetate, respectively.
Further Reading

Caister Academic Press is a leading academic publisher of advanced texts in microbiology, molecular biology and medical research. Full details of all our publications at caister.com

- **MALDI-TOF Mass Spectrometry in Microbiology**
 Edited by: M Kostrzewa, S Schubert (2016)
 www.caister.com/malditof

- **Aspergillus and Penicillium in the Post-genomic Era**
 Edited by: RP Vries, IB Gelber, MR Andersen (2016)
 www.caister.com/aspergillus2

- **The Bacteriocins: Current Knowledge and Future Prospects**
 Edited by: RL Dorfl, SM Roy, MA Rile (2016)
 www.caister.com/bacteriocins

- **Omics in Plant Disease Resistance**
 Edited by: V Bhadauria (2016)
 www.caister.com/opdr

- **Acidophiles: Life in Extremely Acidic Environments**
 Edited by: R Quatrini, DB Johnson (2016)
 www.caister.com/acidophiles

- **Climate Change and Microbial Ecology: Current Research and Future Trends**
 Edited by: J Marxsen (2016)
 www.caister.com/climate

- **Biofilms in Bioremediation: Current Research and Emerging Technologies**
 Edited by: G Lear (2016)
 www.caister.com/biorenew

- **Microalgae: Current Research and Applications**
 Edited by: MN Tsaioglou (2016)
 www.caister.com/microalgae

- **Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives**
 Edited by: H Shintani, A Sakudo (2016)
 www.caister.com/gasplasma

- **Virus Evolution: Current Research and Future Directions**
 Edited by: SC Weaver, M Denison, M Roossinck, et al. (2016)
 www.caister.com/virusvol

- **Arboviruses: Molecular Biology, Evolution and Control**
 Edited by: N Vasilakis, DJ Gabler (2016)
 www.caister.com/arbo

- **Shigella: Molecular and Cellular Biology**
 Edited by: WD Picking, WL Picking (2016)
 www.caister.com/shigella

- **Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment**
 Edited by: AM Romani, H Guasch, MD Balagué (2016)
 www.caister.com/aquaticbiofilms

- **Alphaviruses: Current Biology**
 Edited by: S Mahalingam, L Herrero, B Herring (2016)
 www.caister.com/alphah

- **Thermophilic Microorganisms**
 Edited by: F Li (2015)
 www.caister.com/thermophile

- **Flow Cytometry in Microbiology: Technology and Applications**
 Edited by: MG Wilkinson (2015)
 www.caister.com/flow

- **Probiotics and Prebiotics: Current Research and Future Trends**
 Edited by: K Venema, AP Camn (2015)
 www.caister.com/probiotics

- **Epigenetics: Current Research and Emerging Trends**
 Edited by: BP Chadwick (2015)
 www.caister.com/epigenetics2015

- **Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications**
 Edited by: A Burkovski (2015)
 www.caister.com/cory2

- **Advanced Vaccine Research Methods for the Decade of Vaccines**
 Edited by: F Bagnoli, R Rappuoli (2015)
 www.caister.com/vaccines

- **Antifungals: From Genomics to Resistance and the Development of Novel Agents**
 Edited by: AT Coste, P Vandeputte (2015)
 www.caister.com/antifungals

- **Bacteria-Plant Interactions: Advanced Research and Future Trends**
 www.caister.com/bacteria-plant

- **Aeromonas**
 Edited by: J Graf (2015)
 www.caister.com/aeromonas

- **Antibiotics: Current Innovations and Future Trends**
 Edited by: S Sánchez, AL Demain (2015)
 www.caister.com/antibiotics

- **Leishmania: Current Biology and Control**
 Edited by: S Adak, R Datta (2015)
 www.caister.com/leish2

- **Acanthamoeba: Biology and Pathogenesis (2nd edition)**
 Author: NA Khan (2015)
 www.caister.com/acanthamoeba2

- **Microarrays: Current Technology, Innovations and Applications**
 Edited by: Z He (2014)
 www.caister.com/microarrays2

- **Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications**
 Edited by: D Marco (2014)
 www.caister.com/n2

Order from caister.com/order
these acetate and 3-PG stimulated NTPase, we found that among the various metabolites only acetyl phosphate and 2,3-bisphosphoglyceric acid (2,3-BPG) have inhibitory effects. At 10 mM of concentration, both acetyl phosphate and 2,3-BPG could almost completely nullify the stimulatory action of 10 mM acetate or 10 mM 3-PG. We have also found that this inhibition of acetyl phosphate or of 2,3-BPG was not due to the chelation of Mg\(^{2+}\), since the addition of excess Mg\(^{2+}\) did not help in blocking the inhibitory effects.

Recently, Brian et al. (1999) described that Era binds with E. coli succinyl CoA synthetase (SCS). Using anti SCS antiserum (kindly provided by Dr. W. Wolodko, University of Alberta), we have also detected SCS (both α and β subunits) in our Era preparations which have been purified by MonoQ (Pharmacia) ion exchange chromatography as described previously (Sayed et al., 1999). As such, we obviously examined whether our above observation of the acetate and 3-PG effects is due to the SCS or not. We have obtained a highly (Affiblue gel) purified SCS (obtained from Dr. W. Wolodko, Alberta University). Expectedly, we have found that an acetate-dependent NTPase was present in the SCS preparation. At 10 mM of potassium acetate unit activities were 1900 and 1100 respectively for ATPase and GTPase in the SCS preparation. However, unlike that of the Era preparation, no or only a weak induction by 3-PG was observed using SCS preparation. Clearly, it indicated that acetate and 3-PG targets are different and raises the possibility of two enzymatic entities, one (present both in Era and SCS preparations) of which is induced by acetate while the other (present in Era preparation) can be stimulated by both 3-PG and acetate. Thus, we have proceeded to fractionate the acetate and 3-PG inducible NTPase activities from SCS and Era preparations using Superdex G200 (Pharmacia) gel filtration column (Figure 2). The peak elution fractions for E. coli SCS (142 kDa) and Era (35 kDa) were 23 and 30, respectively, whereas fractions 26 (corresponds to a molecular mass of ~90 kDa) from both Era and SCS gel filtrations contain the acetate stimulating factor(s), while fraction 29 (corresponds to a molecular mass of ~40 kDa) contains the 3-PG inducible factor(s). The later factor is present exclusively in the Era preparation. It was evident that neither SCS nor Era by itself possessed the observed acetate/3-PG dependent NTP hydrolyzing activities. The acetate-inducible and 3-PG inducible NTPase activities were independent of the presence of Era or SCS.
Recently, Barthel and Walker (1999) have encountered similar problems with the rate of the ATPase activity of DnaK. These authors carefully re-evaluated the ATPase activity of DnaK and have concluded that the previously observed initial burst of ATPase activity was not due to DnaK itself but probably because of the copurified tetramer (66 kDa) of nucleoside diphosphate kinase (NDK). Interestingly, the buffer they used in their study contains a high amount (11 mM) of magnesium acetate. Previously, it was reported that *Psuedomonas aeruginosa* Ras-like protein Pra binds with *E. coli* NDK (Chopade et al., 1997). Consequently, we examined whether NDK contain an acetate or 3-PG dependent ATPase or GTPase, but we could not detect any of such activities with NDK purified from *E. coli* previously (Lu and Inouye, 1996). We have also looked for similar activities of adenylyl kinase (ADK) which has been shown to be able to complement NDK from *E. coli*. ADK was purified from *E. coli* (ndk::cmr') cells as described previously (Lu and Inouye, 1996), and found to contain no acetate or 3-PG dependent ATPase or GTPase.

Finally, we examined two non-*E. coli* GTP-binding proteins expressed in *E. coli*. Obg, an essential protein involves in *Bacillus subtilis* growth and sporulation (Welsh et al., 1994; Vidwan et al., 1995), was obtained as a (His)$_6$ tagged protein (after Ni$^{2+}$-column affinity purification, a courtesy of Dr. James A. Hoch, Scripps Research Institute, La Jolla, Ca). Obg (His)$_6$ preparation showed about 4 to 6 fold increase in its intrinsic GTPase activity and a comparable ATPase activity in the presence of both acetate and 3-PG. Human h-Ras, a cell signaling GTPase, was obtained from three independent sources: (a) from a commercial source (Calbiochem), (b) we purified it from an *E. coli* strain overexpressing human h-Ras by MonoQ ion exchange chromatography in a linear gradient of 1 M NaCl in 20 mM Tris-HCl, pH 7.5, 5 mM MgCl$_2$, and 1 mM DTT after 30% ammonium sulfate precipitation, and (c) gratefully obtained from Dr. Y. Kaziro (Tokyo Institute of Technology). With all of the h-Ras preparations, we could detect very significant ATPase activities (approximately 600 units) only in the presence of 10 mM 3-PG, however not in the presence of 10 mM acetate. The weak intrinsic GTPase activity of h-Ras preparations was found not to be significantly affected by 10 mM 3-PG or 10 mM potassium acetate.

All of the proteins described above were obtained from a number of laboratories. All of these proteins were overexpressed in *E. coli*, and had been passed through quite different approaches of ion exchange and affinity based purification steps. The common presence of an inducible high ATPase in these preparations of GTP-binding proteins is curious. It seems that probably two different (3-PG and acetate-sensitive) proteins are present in *E. coli* which have a common feature that they are copurified with GTP-binding proteins during ion exchange chromatography, but could be separated on a Superdex G200 gel filtration column (see Figure 2). At present, we are unable to predict whether these apparent physical interactions of GTP-binding proteins with acetate/3-PG inducible NTPases have any biological relevance, although the stimulatory action of acetate and 3-PG to these unidentified enzymes probably does signify profound metabolic importance. Nevertheless, their identification and appropriate cautions are necessary in defining and eliminating possible discrepancies regarding the NTPase activities of GTP-binding proteins, at least those purified from *E. coli* expression systems.

References