Milton H. Saier, Jr.*

Department of Biology,
University of California at San Diego,
La Jolla, CA 92093-0116, USA

This issue of JMMB, Vol. 2 No. 1, the first to appear in the new millennium, focuses on a single topic, that of microbial alcoholic fermentation. This topic has been, is and will continue to be of immeasurable historic, scientific and industrial importance. The early study of alcoholic fermentation very substantially contributed to the identification and characterization of microbes and enzymes as well as to early recognition of the fact that cellular metabolism has a firm chemical basis. Fermentation microbiology continues to advance at an ever-increasing rate, thanks in part to the genomics revolution. I here present a brief historical synopsis of the field in order to put the current issue of JMMB in perspective.

In 1810, Gay-Lussac demonstrated that the equation: \(\text{C}_6\text{H}_{12}\text{O}_6 \leftrightarrow 2\text{C}_2\text{H}_5\text{OH} + 2\text{CO}_2 \) accounted for the fermentation of glucose to ethanol and carbon dioxide, and twenty-seven years later, Cagniard-Latour, Schwann and Kützing showed that the phenomenon of alcoholic fermentation required the participation of live yeast cells. Based on these discoveries, Pasteur subsequently made important advances concerning the biological, chemical and pathological properties of alcoholic fermentation. Of particular importance to the topic of microbial fermentation was his observation in 1861 that production of alcohol from glucose does not require molecular oxygen. Pasteur termed the process "la vie sans air". He further showed that anaerobic glucose metabolism generates lactate, butyrate, succinate and glycerol in addition to ethanol, and surmised that aerobic organisms possessed the capacity for anaerobic fermentation. Over the next 100 years, the essential biological universality of the process that Gay-Lussac and Pasteur had studied gradually became established.

The systematic study of enzymes began in 1897 when Buchner first obtained a cell-free extract that converted glucose to ethanol. Meyerhof demonstrated that extracts of mammalian muscle catalyzed the anaerobic degradation of glycogen to lactate using a similar degradative pathway. The process of alcoholic or lactic acid fermentation soon became equated with anaerobic glycolysis, and an understanding of these two related processes developed in parallel. These events marked the birth of molecular microbiology and biochemistry and led to appreciation of the view that at least at the biochemical level, all living organisms are more similar than different. These early notions led to our current recognition, based on nucleic acid and protein sequence data, that all living organisms on Earth are related.

Today, the study of microbial fermentation is as alive and well as in the days of Pasteur and Meyerhof. In this issue of JMMB, a series of minireviews and original research articles dealing with a variety of related basic and applied aspects of current fermentation research are presented. The volume was organized by Christian Schuster of the Technical University of Vienna who, together with Peter Dürre of the University of Ulm, one of the five JMMB Senior Editors, and several outside reviewers, provided the editorial review of the research articles included. We therefore have Christian Schuster and Peter Dürre to thank for the exciting and timely compilation of articles that comprise the meat and substance of the current issue of JMMB.

The sixteen review and research articles included in JMMB Vol. 2 No. 1 focus on the topic of microbial fermentation. Both basic and applied aspects of current research are covered in greater depth and range than had been possible in a single previously published journal volume. Dr. Schuster and his colleagues have put together a collection of papers that will undoubtedly prove to be a valuable reference source for many years to come. They are to be congratulated.

The birth of JMMB in 1999 depended on the active participation of many esteemed scientists. These include the contributors who prepared the scientific materials presented as well as the network of JMMB editors, including the Senior Editors, members of the editorial board and a large number of outside reviewers. I wish to personally thank all of these individuals for their dedicated participation that has helped to make JMMB a viable, much-needed and up-and-coming force in the scientific community, serving both the basic and applied segments of the microbiological community. Names of the Senior Editors and members of the current editorial board can be found on the cover page of each JMMB issue, and their efforts are gratefully acknowledged. The many outside reviewers are listed below, and their contributions are also most gratefully acknowledged.

As noted in previous issues of the journal, JMMB hopes to provide an expression platform for a large segment of the microbiological scientific community. Bioinformatics, Biosystematics, Biotechnology, Functional Genomics, Proteomics and Transcriptome Analyses are among the many areas we aim to emphasize. We look forward to receiving your contributions in these and other established and up-coming areas of basic and applied microbiology and biotechnology.

*For correspondence. Email msaier@ucsd.edu; Tel. (858) 534-4084; Fax. (858) 534-7108.
We gratefully acknowledge the active participation of the following outside reviewers who contributed to the excellence of the first three volumes of JMMB:

H. Bahl
Universität Rostock, Germany

George N. Bennett
Department of Biochemistry and Cell Biology, Rice University, Houston, Texas USA

Stephen Bentley
The Sanger Centre, Welcome Trust Genome Campus, UK

G. Braus
Göttingen, Germany

J. Deutscher
INRA-CNRS, Thiverval-Grignon, France

Kay Diedrichs
Faculty of Biology, University of Konstanz, Germany

Mike Dilworth
Centre for Rhizobium Studies, School of Biological and Environmental Studies, Murdoch University, Australia

Nigel Dimmock
Department of Biological Sciences, University of Warwick, UK

Andrew Easton
Department of Biological Sciences, University of Warwick, UK

R.W. Eaton
National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, USA

Tom Ferenci
Department of Microbiology, University of Sydney, Australia

U. Gerischer
Universität Ulm, Germany

Andrew Glenn
University of Tasmania, Australia

Susan Gottesman
Department of Health and Human Services, National Cancer Institute, National Institutes of Health, USA

Michael Hampsey
Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, USA

Caroline S. Harwood
Department of Microbiology, University of Iowa, USA

J. E. Houghton
Georgia State University, Atlanta, GA, USA

Heidi B. Kaplan
Department of Microbiology and Molecular Genetics, The University of Texas Medical School, USA

T. Komano
Department of Biology, Tokyo Metropolitan University, Japan

Stephen Kowalczykowski
Section of Microbiology, University of California, Davis, USA

R. Krämer
Köln, Germany

M. A. Marahiel
Phillips Universität Marburg, Germany

Cynthia Marie-Claire
Department de Pharmacocimie Moleculaire et Structurale, INSERM, France

N. P. Minton
Centre for Applied Microbiology, Porton Down, UK

W. J. Mitchell
Heriot-Watt University, Edinburgh, UK

Y. Nakamura
Institute of Medical Science, The University of Tokyo, Japan

F. Narberhaus
Zürich, Switzerland

Gary Sawers
Nitrogen Fixation Laboratory, John Innes Centre, UK

E. Schiebel
Glasgow, UK

K. C. Schuster
Institut fuer Analytische Chemie, Technische Universitaet Wien, Vienna, Austria

Cyril J. Smyth
Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, University of Dublin, Ireland

W. Steiner
Graz, Austria

Peter Sudbery
Department of Molecular Biology and Biotechnology, University of Sheffield, UK

Nicholas Thomson
The Sanger Centre, Welcome Trust Genome Campus, UK

Susan Wickner
National Institutes of Health, USA

Kunitoshi Yamanaka
Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, USA

M. Young
Institute of Biological Sciences, University of Wales, Aberystwyth, UK

A. Zeeck
Göttingen, Germany