Polymerase Chain Reaction
Theory and Technology

Authors:
Mark A. Behlke, Integrated DNA Technologies, Coralville, Iowa, USA
Kornelia Berghof-Jäger, BIOTECON Diagnostics, Potsdam, Germany
Tom Brown, University of Southampton, UK
Stephen A. Bustin, Anglia Ruskin University, Chelmsford, UK
Nigel Cook, Jorvik Food Safety Services, York, UK
Martin D'Agostino, Campden BRI, UK
Joseph R. Dobosy, Integrated DNA Technologies, Coralville, Iowa, USA
Trine Hansen, Technical University of Denmark, Søborg, Denmark
Marta Hernández, ITACyL, Valladolid, Spain
Jeffrey Hoorfar, Technical University of Denmark, Søborg, Denmark
Jim Huggett, University of Surrey, Guildford, UK
Waqar Hussain, The Binding Site, Birmingham, UK
Mathilde H. Josefsen, Technical University of Denmark, Søborg, Denmark
Tomáš Kuchta, Food Research Institute, Bratislava, Slovakia
Martin A. Lee, Fluorogenics Limited, Porton Down, UK
Dario L. Leslie, Defence Science and Technology Laboratory, Porton Down, UK
Charlotte Löfström, Agrifood and Bioscience, RISE Research Institute, Sweden
Tania Nolan, The Gene Team, Bury St. Edmunds, UK
Richard Owczarzy, Integrated DNA Technologies, Coralville, Iowa, USA
Michael W. Pfaff, Technical University Munich, Germany
Eyjólfur Reynisson, Alvotech, Reykjavik, Iceland
Gabriel A. de Ridder, Ondersteapoort Biological Products, Pretoria, South Africa
David Rodríguez-Lázaro, ITACyL, Valladolid, Spain
Scott D. Rose, Integrated DNA Technologies, Coralville, Iowa, USA
Chaminda Salgado, GlaxoSmithKline, UK
Nick A. Saunders, Health Protection Agency, London, UK
David J. Squirrell, Enigma Diagnostics, Salisbury, UK
Maureen B. Taylor, University of Pretoria, South Africa
Sara Zaccara, Università degli Studi di Trento, Italy
Contents

Chapter 1 1
Introduction to the Real-time Polymerase Chain Reaction
David Rodríguez-Lázaro and Marta Hernández

Chapter 2 19
Principles of the Real-time Polymerase Chain Reaction
Stephen A Bustin, Sara Zaccara and Tania Nolan

Chapter 3 43
Homogenous Fluorescent Chemistries for Real-time PCR
Martin A. Lee, David J. Squirrell, Dario L. Leslie and Tom Brown

Chapter 4 79
Instrumentation and Fluorescent Chemistries Used in Quantitative Polymerase Chain Reaction
Mathilde H. Josefsen, Charlotta Löfström, Trine Hansen, Eyjólfur Reynisson and Jeffrey Hoofar

Chapter 5 105
Quantification Strategies in Real-time Polymerase Chain Reaction
M. W. Pfaff

Chapter 6 115
The Extraction and Purification of Nucleic Acids for Analysis by PCR
Chaminda Salgado and Waqar Hussain

Chapter 7 127
Sample Preparation for Real-time PCR in Food Science
Tomáš Kuchta

Chapter 8 137
Internal and Other Controls for Real-time PCR Validation
Martin A. Lee, David J. Squirrell and Dario L. Leslie

Chapter 9 151
Oligonucleotide Primers and Probes: Use of Chemical Modifications to Increase or Decrease the Specificity of qPCR
Scott D. Rose, Richard Owczarzy, Joseph R. Dobosy and Mark A. Behlke

Chapter 10 179
Internal Amplification Controls in Real-time Polymerase Chain Reaction-Based Methods for Pathogen Detection
Nigel Cook, Gabriel A de Ridder, Martin D’Agostino and Maureen B. Taylor
Chapter 11 ... 187
Standardization of Real-time PCR Methods in Food Microbiology
Kornelia Berghof-Jäger

Chapter 12 ... 199
MIQE: Guidelines for the Design and Publication of a Reliable Real-time PCR Assay
Jim Huggett, Tania Nolan and Stephen A. Bustin

Chapter 13 ... 211
Analysis of mRNA Expression by Real-time PCR
Stephen A. Bustin and Tania Nolan

Chapter 14 ... 249
Real-time PCR Arrays
Nick A. Saunders