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Preface

What an exciting time in biology we find our-
selves in. Many complex genomes are deciphered 
(Lander et al., 2001; Mouse Genome Sequencing 
Consortium et al., 2002), leaps and bounds are 
being made in stem cell biology (Takahashi et al., 
2007; Takahashi and Yamanaka, 2006; Thomson 
et al., 1998), and molecular tools are being refined 
for precise editing and engineering of DNA (Car-
roll, 2011; Joung and Sander, 2013; Mali et al., 
2013). On top of all this, our understanding and 
appreciation for epigenetics has made phenom-
enal advances since the term ‘epigenetics’ was 
first put forward by Waddington in the 1940s to 
unite the fields of genetics and developmental 
biology (Waddington, 1942). Initially relating to 
developmental programming, today the designa-
tion of epigenetics is more focused and can be 
defined as the study of the mitotic and/or meiotic 

heritability of gene expression triggered through 
a transient initiating event that occurs in the 
absence of change to the DNA sequence (Berger 
et al., 2009; Felsenfeld, 2014; Russo et al., 1996).

Despite the many advances, there is so much 
more yet to be learned about this complex, yet 
fascinating topic. For example, as illustrated in 
Fig.  1, who directs and initiates whom? DNA 
methylation or histone modifications? What 
about the role of RNA, or DNA structural forms? 
In my opinion, we are but at the base of the moun-
tain and have an exciting and long adventure of 
discovery as we clamber ahead.

This book begins with several chapters that 
focus on epigenetic processes. We start with a 
discussion of the multifunctional zinc finger 
protein YY1 (Chapter 1) that performs numer-
ous central roles in epigenetic phenomena. 

Figure 1 What is the epigenetic hierarchy? Which comes first, DNA methylation or histone modifications? 
Or is it RNA or the act of transcription, and what role does the DNA have in setting up the epigenome?
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Next we transition to two chapters that relate to 
histone-modifying enzymes. The first focuses on 
the versatile role of the histone methyltransferase 
protein SETDB1 in establishing and maintaining 
gene silencing (Chapter 2), whereas the second 
discusses the multifaceted role of sirtuins in fungal 
biology (Chapter 3). The next chapter discusses 
the distribution and detection of the DNA modi-
fication, 5-hydroxymethylcytosine in the genome, 
and how this relates to development (Chapter 4). 
After this chapter, various approaches to identify 
proteins involved in epigenetic processes are 
discussed, including the remarkable power of an 
N-ethyl-N-nitrosourea mutagenesis screen to 
generate mouse lines with mutations in epige-
netic factors that enhance or suppress variegated 
transgene expression (Chapter 5). This is followed 
by a chapter that focuses on the global response 
of chromatin in response to stimuli (Chapter 
6), before a discussion of the complex nature of 
chromatin and epigenetics in defining the cen-
tromere of eukaryotic chromosomes (Chapter 7). 
The next chapter is a broad discussion of dosage 
compensation with a particular focus on what is 
known in frogs and toads and why these animals 
make ideal models to further investigate this 
process (Chapter 8). The first part of the book is 
rounded off with a discussion of long non-coding 
RNAs in epigenetic processes (Chapter 9).

The next section of the book highlights two 
human genetic disorders that are directly impacted 
by epigenetics. The first provides an in depth and 
current review of the autism spectrum disorder 
Rett syndrome, which is caused by mutations in 
the methyl-DNA binding protein MECP2, whose 
gene is located on the X-chromosome and the dis-
ease is therefore also impacted by the mammalian 
dosage compensation pathway, X-chromosome 
inactivation (Chapter 10). The second disease 
focused chapter provides and in depth look at the 
progressive muscle degenerative disorder faci-
oscapulohumeral muscular dystrophy, a complex 
disease that is impacted by many epigenetic influ-
ences (Chapter 11).

Finally, the last section of the book focuses 
on relatively new aspects of epigenetics. We start 
with a discussion of challenges and approaches 
to reprogramming the epigenome (Chapter 12), 
followed by a discussion of the potential for G4 
quadruplex structures as a means for epigenetic 
inheritance (Chapter 13). The book is then 
rounded off with four chapters that address cur-
rent topics in epigenetics. The first discusses the 
application of epigenetics in cancer diagnosis, 
prognosis and therapy (Chapter 14). The second 
(Chapter 15) focuses on transgenerational inher-
itance: inheritance of phenotype in the absence 
of exposure (Fig. 2). The third discusses the influ-
ence of metabolites on the epigenome (Chapter 
16), and the final chapter (Chapter 17) discusses 
the impact of the environment on our epigenome, 
an area of growing concern (Fig. 3).

I would like to thank all the contributors for 
their time and effort in making this book happen, 
and hope that you, the readers, will enjoy and be 
as enlightened as I was in its preparation.

Dr Brian P. Chadwick

Figure 2 Can we now blame (at least in part) 
our great grandmother or our grandfather for 
epimutations that impact us? What are we doing, 
unbeknownst to us, that will impact our lineage 
several generations removed?
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