
Preface

Only clean water has contributed to improv-
ing global health more than vaccines (Andre et 
al., 2008). Vaccines have completely, or nearly, 
eradicated some of the most deadly viral and 
bacterial infections (e.g. smallpox, poliomyelitis, 
diphtheria, tetanus, pertussis, measles, mumps 
and rubella) (Rappuoli et al., 2011). On top of 
direct effects, by preventing infections in vac-
cinated subjects, vaccines also have a number of 
indirect benefits for the individual and society 
(Andre et al., 2008). Indeed, vaccines can generate 
herd immunity, which plays a key role in protect-
ing individuals at higher risk of infection including 
the immunocompromised, elderly and cancer 
patients, those in which the use of the vaccines 
is contraindicated, and those with limited or no 
access to resources to buy them. Vaccination has 
also been shown to reduce the incidence of cer-
tain cancers (Chang, 2003; Harper et al., 2006). 
Indeed, some infective agents are associated with 
cancer, such as HBV with liver cancer and HPV 
with cervical cancer. Furthermore, vaccines are 
a key component in the fight against antibiotic 
resistance both directly and indirectly. By target-
ing bacterial pathogens, vaccines directly reduce 
the need for the use of antibiotics. Antiviral vac-
cines, such as the ones against influenza, can also 
have an indirect effect on reducing the emergence 
of antibiotic resistant strains by decreasing com-
plications associated with super-infections, which 
routinely require antibiotic use.

Most of the vaccines currently available for 
human use were developed on the basis of Louis 
Pasteur’s principle of inactivating or killing the 
infectious agent and then using it to induce 
protective immunity into the host (Rappuoli et 

al., 2011). However, scientists have recently real-
ized that for several pathogens (e.g. serogroup B 
Neisseria meningitidis (MenB), HIV, malaria), con-
ventional vaccinology methods are not sufficient 
or adequate.

After the publication of the first bacterial 
genome in 1995 (Fleishmann et al., 1995), it 
became clear that availability of the genomic 
sequence of pathogens was an invaluable source 
of information for vaccine research. In fact, 
only five years later, a new antigen identification 
approach, named reverse vaccinology, was applied 
to MenB (Pizza et al., 2000). The approach was 
termed reverse vaccinology because antigens were 
selected prior to experimental testing (Rappuoli, 
2000). Later, with the explosion of the omics era, 
vaccine discovery could benefit from techniques 
that generate data complementary to reverse vac-
cinology. With the advent of high-throughput 
sequencing technologies, the availability of 
multiple genomes of the same species allowed 
comparative genomics studies to be performed, 
critical to determine the level of conservation of 
vaccine candidates (He et al., 2010).

However, none of the genomic approaches can 
provide all the information required for vaccine 
design and characterization. Techniques based on 
immunomics, such as the so-called antigenomics, 
can identify candidates expected to be immuno-
genic in humans (Meinke et al., 2005; Rinaudo 
et al., 2009; Vytvytska et al., 2002). Approaches 
based on transcriptomics or proteomics are able 
to identify candidates expressed by pathogens 
under different growth conditions. Studies done 
to date using the different approaches have gener-
ally shown a significant degree of overlap and have 
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identified subsets of the surface and secreted anti-
gens predicted by reverse vaccinology (Bagnoli 
et al., 2011; Bensi et al., 2012; Doro et al., 2009; 
Etz et al., 2002; Grifantini et al., 2002; Rodriguez-
Ortega et al., 2006; Stranger-Jones et al., 2006). 
However, each approach supplies different infor-
mation that altogether can be used to select the 
best candidates.

Despite the recent progress made by omics 
science and high-throughput technologies we 
should not assume that vaccine research can be 
performed without the tight support of basic 
research. Indeed, it is still highly dependent on 
experimental studies and empirical observations. 
It is of critical importance to determine the role 
played by antigens in virulence, and interac-
tions with the host, as well as their function and 
biochemical properties such as the structure. 
Structural biology represents a powerful means to 
identify protective epitopes, especially in highly 
variable antigens. Available vaccines are against 
pathogens whose antigens are relatively stable. 
Microbes that have rapid and extensive antigenic 
variability, remain a major challenge for vaccine 
researchers (Rappuoli and Aderem, 2011). Struc-
tural studies on the antigens can be performed 
to understand the degree of surface exposure of 
the epitopes and to design peptides optimized to 
generate neutralizing antibodies (Dormitzer et al., 
2008).

Another important aspect that requires a basic 
research approach is the discovery of mechanisms 
of protection. Pathogens against which success-
ful vaccines have been developed, have known 
protective mechanisms and in all cases humoral 
response appears to be the driving mechanism 
(Moriel et al., 2010). On the contrary, when pro-
tective mechanisms and correlate of protection 
are not clear (e.g. Staphylococcus aureus, malaria, 
HIV, Candida albicans, tuberculosis), successful 
vaccines could not be developed (Bagnoli et al., 
2012; Dubensky et al., 2012; He et al., 2010). 
Therefore, basic immunology studies to shed light 
on their mechanisms of protection are needed 
to support vaccine development against these 
pathogens. Accumulating literature indicate that 
innate and cell mediated immunity are important 
against several pathogens, such as Mycobacterium 

tuberculosis (Doherty and Andersen, 2005; Hoft, 
2008), Candida albicans and S. aureus.

In this regard, adjuvant formulations 
stimulating T-cell-mediated immunity are 
certainly another important area of investiga-
tion for next generation vaccines. Traditionally, 
adjuvants have been used to increase antibody-
mediated responses. However, the important 
role of adjuvants in stimulating T-cell responses 
is also becoming clear. Recently, the role of Toll-
like receptors as adjuvant targets is emerging as a 
promising area of investigation.

Usually, prior to clinical trials, most of the 
information available on protective efficacy of 
candidate vaccines is obtained in animal models 
and in in vitro studies. However, this approach has 
several limitations in predicting human immune 
response to vaccines. This is particularly true for 
those pathogens mentioned earlier for which 
correlate of protection in humans are unknown. 
Indeed, several failures in phase III clinical trials 
on HIV, malaria, and S. aureus have been recorded 
(Proctor, 2012; Shinefield et al., 2002; Spellberg 
and Daum, 2010, 2012). The possibility to use 
different high-throughput technologies (e.g. 
next generation sequencing) to monitor the host 
response to vaccination and disease as well as to 
interrogate T- and B-cell repertoires in a large 
collection of individuals will allow the discovery 
of signatures of protection in humans. By integrat-
ing as many biological measurements as possible, 
systems biology will provide a powerful tool to 
analyse and interpret host responses to vaccines in 
clinical trials.

The aim of this book is therefore to illustrate 
the impressive technological advance that is 
increasing the quality standards of vaccines and 
is paving the way to develop vaccines against dis-
eases for which efficacious medical treatments are 
still lacking. The examples that we have used com-
prise very different diseases; we include not only 
infectious diseases, but also cancer. We believe 
that these will be the vaccines of the future, the 
‘vaccines for 2020’.
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