Two-component Systems Involved in Regulation of Motility and Development in Myxococcus xanthus
Daniela Keilberg, Stuart Huntley and Lotte Søgaard-Andersen
from: Two-Component Systems in Bacteria (Edited by: Roy Gross and Dagmar Beier). Caister Academic Press, U.K. (2012)
Abstract
The Myxococcus xanthus lifecycle is characterized by many social interactions. In particular, M. xanthus forms cooperatively spreading colonies in the presence of nutrients and multicellular, spore-filled fruiting bodies in the absence of nutrients. Formation of both cellular patterns depends on two intact motility systems. Moreover, fruiting body formation depends on intercellular communication and temporally regulated gene expression. The M. xanthus genome encodes a staggering 272 putative proteins of two-component system and most aspects of the M. xanthus lifecycle are regulated by one or more of these proteins. Interestingly, many of the corresponding genes encoding two-component system proteins possess an unusual organization in complex genes clusters and as orphan genes. However, major strides have been made in our understanding of a large number of these proteins. Here, we focus on the function of well-studied proteins of two-component systems in motility and development in M. xanthus read more ...