Papillomavirus-like Particles and Their Applications in MolecularVirology, Human Serology and Vaccines
Richard B.S. Roden and Raphael P. Viscidi
from: Papillomavirus Research: From Natural History To Vaccines and Beyond (Edited by: M. Saveria Campo). Caister Academic Press, U.K. (2006)
Abstract
The discovery early in the 1990s that the major capsid protein of papillomaviruses, L1, assembles into virus-like particles (VLPs) has propelled prophylactic vaccine development and led to significant advances in the study of the natural history and molecular virology of this DNA tumor virus. VLPs present the conformational epitopes required for generating high titer neutralizing antibodies but are devoid of the potentially oncogenic viral genome. Therefore, VLPs are attractive candidates for a vaccine to prevent genital HPV infection. Indeed ongoing clinical vaccine trials with L1 VLPs demonstrate the induction of protective immunity. HPV VLPs have also been exploited as an antigen in enzyme-linked immunosorbant assays (ELISAs) to detect anti-virion immune responses in human sera. HPV 16 VLP-based ELISAs were the first HPV serological assays to have sufficient sensitivity and specificity to make them widely applicable to studies of the natural history of HPV infection and to demonstrate its association with neoplastic disease. Finally, studies of the molecular virology and immunology of oncogenic type papillomaviruses have been hampered by the difficulties in obtaining biochemical quantities of native virions. VLPs have been a useful surrogate for study of capsid structure, immunology and function in infection. In this chapter we summarize the dramatic impact of VLP technology in advancing our understanding of papillomavirus biology and immunology and discuss some of its limitations read more ...