Caister Academic Press

Omics approaches for understanding gene expression in Leishmania: clues for tackling leishmaniasis

Jose M Requena, Pedro J Alcolea, Ana Alonso and Vicente Larraga
from: Protozoan Parasitism: From Omics to Prevention and Control (Edited by: Luis Miguel de Pablos Torró and Jacob-Lorenzo Morales). Caister Academic Press, U.K. (2018) Pages: 77-112.


Leishmaniases, a group of parasitic diseases caused by species of the genus Leishmania, afflict millions of people across the globe and cause significant morbidity and mortality. Unfortunately, vaccine and chemotherapy options are limited. The advances in whole genome sequencing have led to renewed impetus in identifying druggable targets for future development of more effective treatments. Hence, the last decade has witnessed a revolution in our understanding of the Leishmania genomes through the completion of an increasing number of genome sequencing projects for several species and strains. However, the completion of a genome sequence is not the final product, rather it is just the beginning towards the objective of linking the wealth of data encoded in millions of bases to the biological processes of an organism. Moreover, the genome features (genomics) is only a part of the problem to be solved: the genome yields on transcription, the transcriptome, which in turn yields the proteome on translation, and ultimately the proteins either produce metabolites or are modulated by them. The size of genomics, transcriptomics, proteomics and metabolomics datasets has impelled a new way of analyzing data together with the development of potent bioinformatics tools. During their life cycles, Leishmania parasites undergo significant changes in their morphology and metabolism. These changes clearly demand a developmental regulation of differential gene expression. Moreover, it is now becoming clear that epigenetic control can also regulate other aspects of the parasitic life cycle, including the control of the switch from proliferative to developmental programs, and the adaptations required for host and cellular tropisms read more ...
Access full text
Related articles ...