Microfluidic Emulsion PCR
N. Reginald Beer and John H. Leamon
from: PCR Troubleshooting and Optimization: The Essential Guide (Edited by: Suzanne Kennedy and Nick Oswald). Caister Academic Press, U.K. (2011)
Abstract
PCR has traditionally been performed in microliter-scale reactions because larger scale volumes are prohibitively expensive and wasteful while the smaller scales (nanoliter and below) are impractical with available sample handling tools and detection systems. At the microliter scale, samples can contain mutually competitive and distinct targets, introducing amplification bias and competitive inhibition that degrade assay performance. Microfluidic Emulsion PCR has emerged as a technique to resolve these challenges by a combination of two enabling technologies. Emulsion PCR provides the advantages of fluid partitioning, namely elimination of sample bias and the ability to run millions of reactions in discrete volumes, while microfluidics simultaneously reduces the sample volume, introduces a level of control over emulsion parameters, and provides optical observability of the partitioned microreactors. Furthermore, since microfluidic emulsions can be made monodisperse in size, they allow the assumption of an average dilution per reactor to permit the exploitation of Poisson statistics for very accurate titer estimation. Microfluidic emulsions can also be employed to perform solid-phase amplification with bead-based assays, combining yet another useful technique with the sample partitioning benefits of droplets. We expect the advantages of both emulsion PCR and microfluidics will encourage new applications and the integration of these enabling technologies will improve PCR performance read more ...