Caister Academic Press

Myxococcus xanthus Vegetative and Developmental Cell Heterogeneity

Penelope I. Higgs, Patricia L. Hartzell, Carina Holkenbrink and Egbert Hoiczyk
from: Myxobacteria: Genomics, Cellular and Molecular Biology (Edited by: Zhaomin Yang and Penelope I. Higgs). Caister Academic Press, U.K. (2014)

Abstract

The myxobacteria have long been considered model organisms for complex multicellular behavior and Gram-negative differentiation. To effectively compete for nutrients in soil or aquatic environments, these bacteria have evolved multicellular hunting strategies and phenotypic heterogeneity within the population, such as phase variation and cell clustering, which likely contribute to the success of these organisms. To survive periods of nutrient limitation, most myxobacteria enter a complex developmental program culminating in the formation of multicellular fruiting bodies filled with environmentally resistant spores. The developmental program of Myxococcus xanthus, the model myxobacterium, involves segregation of the starving population into at least three distinct fates: aggregation into multicellular mounds followed by differentiation into spores, differentiation into a persister-like state termed peripheral rods, and developmentally-induced cell lysis. This chapter describes what is currently known about the role of phenotypic heterogeneity and developmental cell fate differentiation in the M. xanthus lifecycle. We describe the physiological characteristics as well as regulatory mechanisms involved in generating phenotypic heterogeneity and cell fate differentiation during both vegetative and developmental stages of these remarkably adaptable bacteria read more ...
Access full text
Related articles ...