Caister Academic Press

Bacterial Cell Wall Growth, Shape and Division

Adeline Derouaux, Mohammed Terrak, Tanneke den Blaauwen and Waldemar Vollmer
from: Bacterial Membranes: Structural and Molecular Biology (Edited by: Han Remaut and Rémi Fronzes). Caister Academic Press, U.K. (2014)

Abstract

The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by outer-membrane regulators of peptidoglycan synthases. Cell division is achieved by a large assembly of essential cell division proteins, the divisome, that coordinates the synthesis and hydrolysis of peptidoglycan during septation. Coccal species such as Staphylococcus aureus grow exclusively by synthesis and cleavage of a cross-wall. Ovococci like Streptococcus pneumoniae elongate at a central growth zone resulting in their lancet-shape. Rod-shaped species elongate either at the side-wall coordinated by the MreB cytoskeleton, like Escherichia coli or Bacillus subtilis, or at the poles like Corynebacterium glutamicum. Bacteria have different mechanisms to achieve bent or helical cell shape, involving cytoskeletal proteins, periplasmic flagella or peptidoglycan hydrolases, and to form branched, filamentous cell chains. Peptidoglycan enzymes and cytoskeletal proteins are validated targets for antimicrobial compounds. Recent approaches applying structure-based inhibitor design, high-throughput screening assays and whole cell assays have identified a large number of novel inhibitors of cytoskeletal proteins and enzymes of the peptidoglycan biosynthesis pathway read more ...
Access full text
Related articles ...