Caister Academic Press

Metabolism and Physiology of Borrelia

Frank C. Gherardini, Daniel P. Dulebohn, Travis J. Bourret and Crystal L. Richards
from: Lyme Disease and Relapsing Fever Spirochetes: Genomics, Molecular Biology, Host Interactions and Disease Pathogenesis (Edited by: Justin D. Radolf and D. Scott Samuels). Caister Academic Press, U.K. (2021) Pages: 131-180.

Abstract

In this chapter, we define key biochemical pathways and metabolic systems that are the underpinning of the physiology of Borrelia. Energy extracted from the fermentation of a few simple sugars fuels these biochemical reactions and also energizes a V-type ATPase (V-ATPase), establishing a membrane potential that drives motility and the transport of most solutes. After transport, metabolites and biochemical intermediates, such as simple sugars, fatty acids, purines and pyrimidines, peptides and metal ions, are chemically utilized and/or modified to provide an intracellular pool of compounds necessary for protein, nucleic acid, membrane and cell wall biosynthesis. The extremely limited de novo biosynthetic capacity of Borrelia restricts members of this genus to a host-dependent lifestyle but conserves energy and reflects a reduction of the genome that is an interesting example of adaptive biology. It is fascinating how well the metabolism and physiology of Borrelia spp. dovetail with the physiology of their vertebrate and arthropod hosts read more ...
Access full text
Related articles ...