Caister Academic Press

Genome-wide Profiling of Unique Domain Architectures Reveals Novel Epigenetic Regulators of Leishmania infantum

V. S. Gowri, Nimisha Mittal, Rohini Muthuswami and Rentala Madhubala
from: Molecular Biology of Kinetoplastid Parasites (Edited by: Hemanta K. Majumder). Caister Academic Press, U.K. (2018) Pages: 1-26.


Leishmania, a protozoan parasite, constitutes a major source of human mortality and morbidity. Epigenetic gene regulation has emerged as a major mechanism for gene regulation. Not much is known about the post-translational histone modifications and chromatin-modifying enzymes in Leishmania. The resolution of the genome of Leishmania has enabled us to perform the first-ever genome-wide survey of the epigenetic regulator proteins. In this chapter, the complete repertoire of epigenetic modulators comprising of 238 proteins [40 Writers, 16 Readers (excluding 32 Ankyrin repeat proteins and 121 WD40 proteins), 18 ATP-dependent chromatin remodelers belonging to SWI2/SNF2 family and 11 Erasers] is reported. Our analysis showed that the organism contained 30 lysine methyltransferases of which 18 were specific to kinetoplastids. 3 DOT1 methyltransferases were identified as against an earlier report of only 2 DOT1 homologs in T. brucei. Our analysis also showed that L. infantum, unlike human, contains only the second type of demethylases (Jumonji type) and LSD1 type demethylase is absent. Further, the organism contains 3 Class III (sirtuins) HDACs phylogenetically closer to the Gram-negative bacterial sirtuins. The present study provides new insights into a complete repertoire of histone-modifying enzymes that could help in better understanding of epigenetic regulation in Leishmania read more ...
Access full text
Related articles ...