Molecular Profiles of EBV Latently Infected Cells
Michael A Calderwood and Eric C. Johannsen
from: Epstein-Barr Virus: Latency and Transformation (Edited by: Erle S. Robertson). Caister Academic Press, U.K. (2010)
Abstract
EBV immortalizes B lymphocytes through the expression of latent genes encoding the membrane proteins (LMPs) and nuclear proteins (EBNAs). LMPs and EBNAs profoundly impact the B cell through usurping cell signaling cascades required for B cell survival and growth. Modulation of the NF-κB, B cell receptor, Notch, and possibly other signaling pathways permits a substantial reprogramming of the EBV infected cell with a limited gene repertoire. Molecular profiling of mRNAs induced and repressed by EBV infection of cells has consistently revealed extensive changes in gene expression, but there is remarkably little concordance among different studies. The most consistently EBV induced genes are downstream of LMP1 and EBNA2 and most of the attributable EBV repressed genes are due to EBNA2. The apparent dominance of EBNA2 and LMP1 in EBV gene regulation may be partly attributable to the emphasis on genes experiencing the most extreme fold changes in expression. Future mRNA profiling studies using common platforms for analysis may permit identification of more subtle effects on gene expression and elucidate the role(s) played by the other EBV latency gene products read more ...