Caister Academic Press

Botulinum and Tetanus Neurotoxins, Molecular Biology and Toxin Gene Regulation, Mode of Action

S. Raffestin, A. Couesnon, Y. Pereira, C. Mazuet and M. R. Popoff
from: Clostridia: Molecular Biology in the Post-genomic Era (Edited by: Holger Brüggemann and Gerhard Gottschalk). Caister Academic Press, U.K. (2009)


Botulinum neurotoxins (BoNT) and tetanus toxin (TeNT) are potent toxins which are responsible for severe diseases, botulism and tetanus, in men and animals. BoNTs induce a flaccid paralysis, whereas TeNT causes a spastic paralysis. Both toxins are zinc-dependent metalloproteases, which specifically cleave one of the three proteins (VAMP, SNAP25, and syntaxin) forming the SNARE complex within target neuronal cells which have a critical function in the release of neurotransmitter. BoNTs inhibit the release of acetylcholine at peripheral cholinergic nerve terminals, whereas TeNT blocks neurotransmitter release at central inhibitory interneurons. Only a single form of TeNT is known, but BoNTs are divided in 7 toxinotypes and various subtypes, which differ in amino acid sequences and immunological properties. In contrast to TeNT, BoNTs are associated to non-toxic proteins (ANTPs) to form highly stable botulinum complexes. TeNT is produced by Clostridium tetani, and BoNTs by Clostridium botulinum and atypical strains of Clostridium baratii and Clostridium butyricum. The genes encoding the neurotoxin and ANTPs are clustered in a DNA segment, called botulinum locus, which is located on chromosome, plasmid or phage. Neurotoxin synthesis is a highly regulated process, which occurs in late exponential growth phase and beginning of stationary phase, and which is dependent of alternative sigma factors (BotR or TetR). BotR and TetR are related to other clostridial sigma factors, TcdR and UviA, which are involved in the control of Clostridium difficile toxins A and B, and Clostridium perfringens bacteriocin, respectively. BotR, TetR, TcdR and UviA form a new subgroup of RNA polymerase sigma factors read more ...
Access full text
Related articles ...