Caister Academic Press

Adaptive Immunity to Chlamydia trachomatis Infection

Taylor B. Poston, Toni Darville and Raymond M. Johnson
from: Chlamydia Biology: From Genome to Disease (Edited by: Ming Tan, Johannes H. Hegemann and Christine Sütterlin). Caister Academic Press, U.K. (2020) Pages: 313-338.

Abstract

Understanding mechanics of mucosal adaptive immunity may facilitate development of a Chlamydia trachomatis vaccine. This chapter details mechanisms involved in determining whether an individual's adaptive immune response (antigen-specific B and T cell response) to a chlamydial genital tract infection or urogenital vaccine results in asymptomatic clearance (protection) or disease (urethritis/salpingitis/infertility). Over 30 years of research have revealed that adaptive responses to C. trachomatis are more complex than the presence or absence of antigen-specific T cell production of interferon-gamma (IFN-ɣ) (Th1 immunity) and B cell production of neutralizing antibody against elementary bodies. Basic research is beginning to define adaptive immunity to Chlamydia infections as functioning in tissues rather than in lymph nodes and spleens. Central to local tissue immunity against the epithelial-tropic C. trachomatis serovars (A-K) are B cells, T cells, and highly specialized immune infrastructures localized immediately beneath the reproductive tract epithelium. These subepithelial immune structures, called memory lymphocyte clusters, harbour plasma B cells and tissue resident memory T cells that are likely to be critical to protective immunity. While this story is incomplete, we try to present a working narrative of how chlamydial-specific mucosal adaptive immunity may be relevant to vaccine development. We touch on trachoma adaptive immunity to highlight how the eye differs from the genital tract as that informs the possibility of a universal urogenital/trachoma vaccine. Adaptive immunity mechanisms in Chlamydia-associated reactive arthritis, C. trachomatis serovar L1-3 (causative agent of lymphogranuloma venereum), and other Chlamydiae (e.g.C. psittaci) are unique and cannot be extrapolated from C. trachomatis urogenital tract data read more ...
Access full text
Related articles ...