Caister Academic Press

Application of the qPCR Technique for SRB Quantification in Samples from the Oil and Gas Industries

Mariana Galvão and Márcia Lutterbach
from: Applications of Molecular Microbiological Methods (Edited by: Torben L. Skovhus, Sean M. Caffrey and Casey R.J. Hubert). Caister Academic Press, U.K. (2014)

Abstract

Microorganisms can grow in many different types of fuels and industrial facilities. Microorganisms may grow in the presence of oxygen (aerobic conditions) or in its absence (anaerobic conditions), feeding primarily on hydrocarbon fuel, minerals and other impurities in the water. In practice, the bottoms of fuel storage tanks or even tanks of buses and trucks contain enough water to allow for significant microbial growth. Microbial activity leads to the production of biomass (fouling), which can be deposited at the bottom of the tank. Moreover, the microbial oxidation of hydrocarbons produces corrosive metabolites, such as organic and inorganic acids. Biomass, metabolic products and corrosion products result in problems such as filter and pipeline clogging, production of emulsions, lowered fuel quality and corrosion of metal tanks. The detection and quantification of microorganisms in industrial samples has traditionally been based on culturing techniques such as the most probable number (MPN) method. However, the slow growth of strictly anaerobic sulfate-reducing bacteria (SRB) complicates the rapid detection and isolation of these microorganisms in culture media. In some cases, the extended time for the detection of microorganisms delays urgently required preventive and corrective actions, thus aggravating the corrosive process. Here we present the results of SRB quantification in different samples from the oil and gas industry analyzed by qPCR read more ...
Access full text
Related articles ...