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Abstract
The history of DNA sequencing dates back to 
1970s. During this period, the two first-generation 
nucleotide sequencing techniques were devel-
oped. Subsequently, Sanger’s dideoxy method of 
sequencing gained popularity over Maxam and Gil-
bert’s chemical method of sequencing. However, 
in the last decade, we have observed revolutionary 
changes in DNA sequencing technologies leading 
to the emergence of next-generation sequenc-
ing (NGS) techniques. NGS technologies have 
enhanced the throughput and speed of sequencing 
combined with bringing down the overall cost of 
the process over a time. The major applications of 
NGS technologies being genome sequencing and 
resequencing, transcriptomics, metagenomics in 
relation to plant–microbe interactions, exon and 
genome capturing, development of molecular 
markers and evolutionary studies. In this review, 
we present a broader picture of evolution of 
NGS tools, its various applications in crop plants, 
and future prospects of the technology for crop 
improvement.

Introduction
The overall growth, development and behavioural 
characteristics of every living creature are largely 
determined by its genetic constitution. Subse-
quent to the famous double-helix model of DNA, 
proposed by Watson and Crick (1953), scientists 
began to find the ways and means to determine the 
nucleotide sequence of DNA. The first significant 
breakthrough in this area was achieved in late 1970s 
when two groups working independently reported 
two different approaches for DNA sequencing 
(Maxam and Gilbert, 1977; Sanger et al., 1977). 
Though Maxam and Gilbert’s approach for DNA 
sequencing was preferred initially, it was Sanger’s 
sequencing technology which subsequently got 
popularized among the scientific community. The 
classical genome sequencing projects such as the 
Human Genome Project (HGP), the Arabidopsis 
Genome Initiative and the International Rice 
Genome Sequencing Project were successfully 
completed using Sanger’s sequencing approach. 
Subsequently, many plant genomes were sequenced 
using this sequencing technology. Though Sanger’s 
dideoxy sequencing method is considered as gold 
standard with respect to genome sequencing, there 
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are many shortcomings in this approach. The impor-
tant shortcomings of Sanger’s sequencing method 
are that it is time-consuming, low throughput and 
high cost, and needs more labour, in vivo cloning 
of DNA fragments, etc. Therefore, scientists and 
bioengineers tried to develop new sequencing tech-
niques also known as second-generation (2GS) or 
next-generation sequencing (NGS) technologies. 
The success in this direction was reported in 2005, 
when the first NGS system was developed by 454 
and commercialized by Roche as the GS20 (Mar-
gulies et al., 2005). Subsequently, many NGS/2GS 
systems have been reported, which include Solexa 
GA2 (now Illumina), Applied Biosystem’s SOLiD 
and Ion Torrent www.appliedbiosystems.com; 
www.illumina.com; www.iontorrent.com).

The developments in the field of NGS technolo-
gies have led to a revolution in the field of genetics 
and genomics. In spite of their inherent limitation 
of producing shorter reads with higher error rates 
than Sanger sequencing, NGS technologies are 
still gaining popularity, largely due to their ability 
to produce massive quantities of data at a relatively 

low cost and in a short time period. Further devel-
opments in NGS technologies have consistently led 
to increased read lengths and this is an active area 
of research in the future of NGS technologies. The 
present review compiles the different NGS tech-
nologies and their applications in the field of plant 
biology with special emphasis on agricultural plants 
(Fig. 1.1). In this review we focused primarily on 
the crop genomes giving weightage to genome 
sequencing techniques implied and their chal-
lenges, applications of NGS in plant biology with 
emphasis on agricultural crops and conclude with 
the future strategies and perspective in the area of 
plant genomics.

Evolutions of DNA sequencing 
technology

First generation sequencing 
technologies
The double helix structure of DNA proposed 
by Watson and Crick (1953) was the milestone 

Figure 1.1 NGS platforms as a tool for the plant genomic research. The phenotype of an organism is a 
manifestation of controlled expression of the underlying gene. The gene(s) expression is largely regulated at 
three stages: (a) genomic, (b) transcriptomic and (c) epigenetic. For unravelling the complex cellular machinery 
and its regulatory network the NGS platforms, with suitable modifications, can be utilized at any of these three 
stages (each stage is represented by different colour boxes). Genomic DNA, chloroplast DNA and mitochondrial 
DNA are the primary sources of genetic information which can be divulged by NGS assisted whole genome 
sequencing, high throughput re-sequencing and targeted sequencing. For example, high sequencing coverage 
obtained by NGS platforms is of great utility in determining the single nucleotide variations (SNVs) in genome 
which are of immense importance in establishing genotype phenotype relationships. In addition, NGS tools 
like MethylC-Seq are a ‘gold standard’ technique for studying genome wide methylation pattern. Similarly, 
sequencing of mRNA, small RNAs, long non coding RNAs, degradome and exome helps in understating the 
expression pattern of genes, their spatial and temporal regulations, co-expression networks and association 
with trait.
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in molecular biology research. Subsequently, 
interest was shifted to decipher the nucleotide 
sequence of DNA molecules. The first major suc-
cess in this field was reported simultaneously in 
1977 by two independent groups of researchers 
when two chemistries for DNA sequencing were 
published (Maxam and Gilbert, 1977; Sanger et 
al., 1977). Broadly referred to as first-generation 
sequencing technologies, these two methods uti-
lized different chemistries for DNA sequencing. 
Due to its complex procedure and low resolution 
Maxam and Gilbert’s method did not gain wide 
acceptance. Sanger’s original dideoxynucleotide 
(ddNTPs) chain-termination sequencing method 
was comparatively less cumbersome and relatively 
accurate but required radiolabelled ddNTPs, and 
the chemistry involved four separate base specific 
reactions and autoradiography in order to detect 
the sequence of DNA molecule. Sanger’s method 
was later on modified and improved. An account of 
improvement and evolution of Sanger’s method can 
be found in previous reviews (França et al., 2002; 
Ansorge, 2009; Mardis, 2013).

Second-generation sequencing 
technologies
Second-generation sequencing technologies 
were capitalized by Illumina Genome Analyzer, 
Roche/454 FLX, Life technologies SOLiD and 
Ion Torrent PGM. Second-generation sequencers 
omitted the need of in vivo cloning, and here DNA 
can directly be fragmented to produce sequencing 
libraries of appropriate sizes in vitro by adapter 
ligated amplification using a PCR-based system. 
PCR-based amplification is required to produce 
millions of copies of the original DNA fragment, 
required to produce signal intensity sufficient to 
detect the incorporated bases during sequencing 
steps. Second-generation sequencing technologies 
are divided in two categories on the basis of reaction 
chemistry they use: (a) sequencing by synthesis 
used by Illumina, Roche/454 and Ion Torrent and 
(b) sequencing by ligation used by ABI’s SOLiD 
sequencers.

Third-generation sequencing 
technology: single molecule 
sequencing
Third-generation sequencing (3GS) technology 
differs from second-generation sequencing (2GS) 

technologies as it does not require the amplifica-
tion step, leading to elimination of inclusion errors 
incurred by polymerase during library preparation. 
Second-generation sequencers use a cyclic wash-
and-scan method, and as the number of washing 
and imaging cycles increases, addition of nucleo-
tides becomes more asynchronous which increases 
sequencing errors and signal to noise ratio. This 
particularly limits the read length produced by 
second-generation sequencers. The advantage of 
some single molecule sequencing platforms is the 
ability to detect epigenetic modifications in the 
genome, which are largely diluted due to amplifica-
tion step involved in 2GS techniques (Munera et 
al., 2012). Also, the short reads generated by the 
2GS technologies imposes problems in accurate 
de novo genome assembly, repetitive elements and 
large structural variation analyses (Fan et al., 2010; 
Delcher et al., 2010). The longer reads generated 
by third-generation sequencer helps in de novo 
genome sequencing and assembly, improving old 
assemblies, allowing more accurate analysis of 
structural variation within the genome and more 
contiguous reconstruction of genomes which were 
limited in second-generation sequencers (Carneiro 
et al., 2013). At present, the major challenge with 
the single molecule sequencers is inherent higher 
error rate due to limited ability of detectors to iden-
tify and interpret very low levels of signal generated 
from individual molecules. The 3GS techniques 
are Pacific Biosciences Single Molecule Real Time 
sequencers (SMRT) and Helicos Genetic analysis 
system True single molecule sequencing (tSMS). 
Pacific Biosciences SMRT was the first 3GS tech-
nology to hit the market in 2010. With an improved 
chemistry (C4), the average read length of PacBio 
RS II system is over 10 kb and can generate 1 Gb 
of data per run. In sequel platform PacBio has 
increased the ZMWs density of loading of samples 
due to which the data output has increased drasti-
cally up to 5–10 Gb per run. Since this technology 
uses single DNA polymerase per ZMW, total length 
of a read is dependent on lifespan of the poly-
merase. Single molecule sequencers suffers from 
higher raw data error rate, which accounts for up 
to 15% of incorporated bases, however, this error 
rate can be minimized by multiple sequencing of 
same template. The tSMS from Helicos Genetic 
analysis system was the first commercially available 
true single molecule sequencing system based on 
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sequencing by synthesis chemistry. This platform 
can produce average read length of 30 bases. This 
platform suffers from higher deletion rate ranging 
from 1 to 5%, which can be reduced by sequenc-
ing from both the ends of a fragment (Buzby et al., 
2008).

Fourth-generation sequencing 
technologies: nanopore sequencing
Fourth-generation sequencing (4GS) technologies 
omit the use of labelled nucleotides and does not 
rely on an optical system to detect incorporated 
nucleotides and also there is no need for the syn-
chronous reagent addition and wash steps. This 
technology uses the electronic or chemical proper-
ties of each nucleotide to determine the sequence of 
DNA as it is threaded through a nanopore. Current 
nanopore sequencing technologies use the ionic 
current blockage method. Currently two nanopore-
based systems, biological and solid-state, are being 
developed and refined. Oxford Nanopore technol-
ogy has released MinION for test users which will 
be launched for commercial application. It is small, 
USB powered, easy to carry equipment. It can 
produce average read length of 5.4 kb and go up to 
10 kb (www.nature.com/news/data-from-pocket-
sized-genome-sequencer-unveiled-1.14724).

NGS and plant genomics
Plants being the ultimate source of food and 
metabolic energy for nearly all animals, cannot 
manufacture their own food, but also provide 
sustenance, shelter, clothing, medicines, fuels, and 
the raw materials from which innumerable other 
products are made. The plant kingdom is filled with 
amazingly incomparable diversity and significance 
(Schatz et al., 2010) pertaining to which sequenc-
ing of plant genomes is of great importance. Out of 
the hundreds of thousands of plant species around 
the world, only few of them have been sequenced 
(Michael and Van Buren, 2015; Table 1.1).

Genomics of plants
Advanced high-throughput genome sequencing 
techniques have proved to be a boon in providing 
practical solutions to the challenges in the field of 
genomics, especially crops. The plant kingdom is 
majorly divided into spore bearing vascular plants 
and seed bearing vascular plants. The former is 

further classified into algae, mosses/liverworts 
and ferns, and the latter into non flowering (gym-
nosperms) and flowering (all angiosperms) plants. 
Since the first published genome sequence of Arabi-
dopsis thaliana (Arabidopsis Genome Initiative, 
2000), a large number of plant genomes belong-
ing to different phylum have been sequenced and 
published using both first-generation and NGS 
technologies (Turktas et al., 2015).

Sequenced plant genomes: links 
from vascular plants to angiosperms
The genome sequences of Chlamydomonas rein-
hardtii (120 Mb) and Volvox carteri (138 Mb) are 
amongst the first multi- and unicellular algae spe-
cies, respectively (Merchant et al., 2007; Prochnik 
et al., 2010). Amongst the mosses, the genome of 
Physcomitrella with an assembled genome size of 
500 Mb (Rensing et al., 2008) and Selaginella moe-
llendorffii, the first non-seed plant genome reported 
with an assembled genome size of 212.6 Mb (Banks 
et al., 2011), are breakthrough model organisms in 
order to study the evolution of vascular land plants 
and their divergence. Further for a better under-
standing of the evolution of plants, the genome 
sequence information from other taxa, especially 
charophytes, ferns and gymnosperms, could serve 
as key references. In this context the three gym-
nosperm (conifer) genome sequences published 
recently, viz. the genome of Norway spruce (Picea 
abies) with an assembled size of 19.6 Gb (Nystedt 
et al., 2013) is the first available gymnosperm 
sequence followed by the loblolly pine (Pinus taeda) 
genome (Zimin et al., 2014; Neale et al., 2014) and 
white spruce (Picea glauca) genome (Birol et al., 
2013) with an assembled genome size of 22 Gb 
and 20.8 Gb, respectively. These genomes helped 
to understand the divergence of angiosperms and 
gymnosperms (350 Myr ago) ( Jiao et al., 2011).

The development of water-conducting 
xylem cells and the reproductive development 
are the two major differences between angio-
sperms and gymnosperms. Nystedt et al. (2013) 
compared seven genomes, two from the basal 
plants and five from angiosperms and identi-
fied 1021 P. abies-specific gene families. P. abies 
homologs present in the angiosperms revealed 
that gymnosperms lack orthologues of flowering-
responsible phosphatidylethanolamine-binding 
protein (PEBP) protein. Sequencing of angiosperm 
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Table 1.1 Details of plant genomes sequenced and published during 2015 to 2016

Number Scientific name Common name
Genome 
size (Mb) Type Reference

1 Vigna angularis Adzuki bean 538 Dicot Kang et al., 2015
2 Thlaspi arvense Field pennycress 539 Dicot Dorn et al., 2015
3 Primula veris Cowslip 480 Dicot Nowak et al., 2015
4 Hordeum vulgare Tibetan hulless barley 4480 Dicot Zeng et al., 2015
5 Vaccinium corymbosum American blue berry 500 Dicot Gupta et al., 2015 
6 Arabis alpina Alpine rockcress 375 Dicot Willing et al., 2015
7 Ipomea trifida Wild sweet potato 520 Dicot Hirakawa et al., 2015
8 Gossypium hirsutum Upland cotton 2340 Dicot Li et al., 2015
9 Boea hygrometrica 1690 Dicot Xiao et al., 2015
10 Solanum commersonii Wild potato 830 Dicot Aversano et al., 2015
11 Catharanthus roseus Madagascar periwinkle 738 Dicot Kellner et al., 2015
12 Ocimum sanctum Holy basil 386 Dicot Rastogi et al., 2015
13 Moringa oleifera Drumstick tree 315 Dicot Tian et al., 2015
14 Zizania latifolia Jiaobei 590 Dicot Guo et al., 2015
15 Cymbomonas tramitiformis 850 Algae Burns et al., 2015
16 Gossypium barbadense Sea island cotton 2470 Dicot Liu et al., 2015
17 Lolium perenne Perennial ryegrass 2000 Monocot Byrne et al., 2015
18 Chlorella pyrenoidosa 57 Monocot Fan et al., 2015
19 Anana comosus Pineapple 526 Monocot Ming et al., 2015
20 Oropetium thomaeum 245 Monocot Van Buren et al., 2015
21 Lemna minor Common duckweed 481 Monocot Van Hoeck et al., 2015
22 Trifolium pratense Red clover 420 Dicot De Vega et al., 2015
23 Salvia miltiorrhiza Chinese red sage 641 Dicot Zhang et al., 2015
24 Parachlorella kessleri 63 Algae Ota et al., 2016
25 Zostera marina Common eelgrass 238 Monocot Olsen et al., 2016
26 Dendrobium catenatum Chained dendrobium 1110 Monocot Zhang et al., 2016
27 Arachis duranensis Wild peanut A 1250 Dicot Bertioli et al., 2016
28 Arachis ipaensis Wild peanut A 1560 Dicot Bertioli et al., 2016
29 Cynara cardunculus Globe artichoke 1084 Dicot Scaglione et al., 2016
30 Rosa roxburghii Chestnut rose 481 Dicot Lu et al., 2016
31 Zoysia japonica 390 Monocot Tanaka et al., 2016
32 Zoysia matrella Manila grass 380 Monocot Tanaka et al., 2016
33 Zoysia pacifica 370 Monocot Tanaka et al., 2016
34 Fagopyrum esculentum Common buckwheat 1300 Dicot Yasvi et al., 2016
35 Gonium pectorale 149 Algae Hanschen et al., 2016
36 Rubus accidentalis Black raspberry 293 Dicot Van Buren et al., 2016
37 Petunia oxillaris White moon petunia 1400 Dicot Bombarley et al., 2016
38 Pogostemon cablin Patchouli 1570 Dicot He et al., 2016
39 Lepidium meyenii Maca 751 Dicot Zhang et al., 2016
40 Daucus carota Carrot 473 Dicot Iorizzo et al., 2016
41 Juglans regia Common walnut 606 Dicot Martinez-Garcia et al., 

2016
42 Drosera capensis Cape sundew 293 Dicot Butts et al., 2016
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genomes thus additionally served and immensely 
helped in understanding their divergence from rest 
of the plant genomes. With over 100 plant genome 
sequence data already published (Michael and Van 
Buren, 2015; https://genomevolution.org/wiki/
index.php/Sequenced_plant_genomes), it is pos-
sible to study their complex life cycle, evolutionary 
history and genome structural organization. The 
crops and model plant genomes such as Arabidopsis, 
Brachypodium distachyon, Physcomitrella patens and 
Setaria italica, Oryza sativa, Populus trichocarpa, Zea 
mays, Glycine max, Solanum lycopersicum and Pinus 
taeda are extremely vital not just as crops but as 
functional models to enable genome-wide studies 
of various key genes/gene families, pathways and 
important traits (Arabidopsis Genome Initiative, 
2000; Vogel et al., 2010; Rensing et al., 2008; Ben-
netzen et al., 2012; Zhang et al., 2012a; Goff et al., 
2002; Yu et al., 2002; Tuskan et al., 2006; Schnable 
et al., 2009; Schmutz et al., 2010; Tomato Genome 
Consortium, 2012; Zimin et al., 2014). Neverthe-
less, non-functional models and non-crop plants 
serve as sources to explore the evolution of flower-
ing plants and an in-depth understanding of plant 
genome architecture. The genome sequences of 
non-functional model plants like Utricularia gibba 
(bladderwort; 77 Mb), Genlisea aurea (corkscrew; 
43.4 Mb), an aquatic non-grass monocot Spirodela 
polyrhiza (greater duckweed; 158 Mb), Selaginella 
moellendorffii (212.6 Mb), and Amborella trichopoda 
(870 Mb) are available (Banks et al., 2011; Albert 
et al., 2013; Ibarra-Laclette et al., 2013; Leushkin 

et al., 2013; Wang et al., 2014). These can help to 
identify the whole evolutionary link between basal 
vascular plants and the most complicated and 
diverse angiosperms. Most importantly, it can help 
in identifying plant-specific gene families responsi-
ble for the specialized characteristic of each family 
and genus of the plant kingdom.

Role of third-generation sequencing 
platforms in decoding plant genomes
We have seen a generation of large volumes of 
sequencing information through NGS and assem-
bly platforms. Although NGS systems producing 
up to 100 Gb of data per run have advanced genome 
information (Imelfort and Edwards, 2009; Mardis, 
2008; Schatz et al., 2010; The 1000 Genomes 
Project Consortium, 2010), the diversity and vari-
ations of different genomes and short read lengths 
from NGS make it difficult to achieve a complete 
published genome information. Therefore, taking 
DNA sequencing to a further level and dramati-
cally reducing costs, several companies have hit 
the market with the third-generation sequencing 
(3GS) technologies. The remarkable quality of 
genome sequences produced by 3GS and mapping 
technologies are hundreds to thousands of times 
more contiguous and enable improved analysis of 
nearly every aspect of the genome. The genomes are 
more complete and show accurate representation 
of genes, regulatory regions and other important 
genomic elements, as well as better resolution of 
the overall chromosome organization (Burton et 

Number Scientific name Common name
Genome 
size (Mb) Type Reference

43 Zostera muelleri Dwarf grass wrack 390 Dicot Lee et al., 2016
44 Chenopodium quinoa Quinoa 1500 Dicot Yasvi et al., 2016
45 Artocarpus camansi Breadnut 669 Dicot Gardner et al., 2016
46 Citrus paradisi × Poncirus 

trifoliata
Swingle citrumela 380 Dicot Zhang et al., 2016

47 Musa itinerans Yunnan banana 615 Monocot Wu et al., 2016
48 Cicer reticulatum Wild chickpea 817 Dicot Gupta et al., 2016
49 Trifolium subterraneum Subterranean clover 540 Dicot Hirakawa et al., 2016
50 Quercus lobata Valley oak 725 Dicot Sork et al., 2016
51 Brassica nigra Black mustard 591 Dicot Yang et al., 2016
52 Brassica juncea Chinese mustard 922 Dicot Yang et al., 2016
53 Rhazya stricta Harmal 274 Dicot Sabir et al., 2016

Table 1.1 Continued
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al., 2013; Roberts et al., 2013; Ross et al., 2013; Cao 
et al., 2014; Pendleton et al., 2015; Lee et al., 2016).

Next-generation sequencing 
and plant transcriptome analysis
The rapid developments in NGS technologies 
have revolutionized the field of plant transcriptom-
ics, specifically in those plants where no genome 
sequence information is available. The NGS-based 
RNA sequencing technologies are generally called 
mRNA-seq tools. These technologies provide a 
novel method for identifying, mapping, and quanti-
fying transcriptomes under different developmental 
stages and stress conditions. Deep RNA sequencing 
is a powerful tool for comparing gene expression 
analysis and discovering the full length 5′ and 3′ 
untranslated regions, novel splice junctions and 
transcripts, alternative transcription start sites, and 
rare transcripts (Cloonan et al., 2008; Mortazavi et 
al., 2008; Wilhelm et al., 2008; Zhang et al., 2010; 
Fig. 1.2). RNA-seq data with both technical and 
biological replicates show good level of reproduc-
ibility (Cloonan et al., 2008). The transcribed RNA 

from genomic DNA, besides coding for proteins, 
also has potential non-coding RNAs. Owing to 
their significance in regulation of gene expression, 
these non-coding RNA have attracted great atten-
tion in recent past.

Applications of transcriptome 
profiling and long non-coding RNA 
(lncRNA) in plant

Cereals

A large number of studies are carried out to gener-
ate transcriptomes from cereal crops. RNA-seq 
was used to understand the transcriptional regula-
tory network of Opaque2 (O2). O2 transcription 
factor in maize plays an important role as a central 
regulatory molecule during maize endosperm 
development by regulating multiple regulatory 
pathways (Li et al., 2015). The RNA-seq analysis 
found 1605 differentially expressed genes and 383 
differentially expressed long, non-coding RNAs 
between wild-type and O2 endosperms, 15 days 
after pollination. Transcriptome sequencing in rice 
was used to study differentially expressed genes 

Figure 1.2 Pipeline for transcriptome sequencing using NGS techniques.
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(DEGs) upon infection with Magnaporthe oryzae 
and to probe the molecular response of rice to Usti-
laginoidea virens infection (Kawahara et al., 2012; 
Bagnaresi et al., 2012; Chao et al., 2014). Similarly, 
genome-wide transcription profiling of primed 
(Selenium and salicylic acid priming) and non-
primed seedlings of rice was reported (Hussain et 
al., 2016). Transcriptome of bread wheat provided 
a methodology for homeolog-specific sequence 
assembly (Schreiber et al., 2012) and deep tran-
scriptome sequencing of a wheat genome was 
used to construct a fine transcriptome map of the 
chromosome 3B (Pingault et al., 2015). A NGS tool 
was also used in barley, finger millet and sorghum 
to study transcriptomes under different conditions 
(Bedada et al., 2014; Rahman et al., 2014; Tombu-
loglu et al., 2015; Abdel-Ghany et al., 2016).

Though many studies were conducted to profile 
the mRNA transcriptome of cereals using NGS 
technology, very few studies are available wherein 
NGS has been used for profiling of lncRNA. These 
studies include genome-wide analysis of non-
coding parts of transcriptomes uncovering lncRNA 
in maize as well as rice and discovered long inter-
genic non-coding RNAs (lincRNA) which contain 
SNP associated with agriculturally important traits 
in maize and two lincRNAs in rice (Kim et al., 2012; 
Wang et al., 2015a).

Pulses and oilseeds

Many studies of NGS applications in pulse crops are 
being reported in last few years. RNA-seq is succes-
sively used in chickpea, lentil, Medicago truncatula 
and Vigna unguiculata to identify developmental 
stage-specific transcriptomes, drought and salinity 
responsive transcriptomes, development of large 
scale genomics resources in lentil such as unigenes 
and 2393 EST-SSRs, to identify osmotic stress 
related lncRNAs and to generate a gene expres-
sion atlas of different plant tissues (Singh and Jain, 
2014; Wang et al., 2015b; Garg et al., 2016; Yao et 
al., 2016)

NGS technology has been used in oil-producing 
plants to study the transcriptome dynamics 
under different conditions. In soybean, RNA-seq 
atlas was built using NGS (Severin et al., 2010). 
Transcriptome profiling of peanut, Brassica napus 
and sunflower was performed to identify various 
biochemical pathways. Further novel lncRNAs of 
Brassica napus in response to Sclerotenia sclerotiorum 

infection were identified. NGS technology was also 
used to understand the molecular basis of a higher 
rate of recombination in cultivated genotypes 
during meiosis as compared to their wild ancestors 
in sunflower ( Joshi et al., 2016; Florez-Zapata et al., 
2016).

Horticulture and ornamental crops

Li et al. (2012) identified 92 DEGs that were 
associated with the metabolism and anthocyanin 
synthesis during fruit ripening. Rowland et al. 
(2012) analysed transcriptomes of different blue-
berry tissues to identify genes that were associated 
with cold acclimation and fruit development. Vari-
ous other transcriptome studies involving fruits, 
flowers and vegetables crops are given Table 1.2.

Commercial crops

Cotton is an important fibre crops in India that 
has high commercial value. In the study aimed 
at analysing the lncRNAs in cotton, Wang et al. 
(2015c) characterized lncRNAs in Gossypium spe-
cies. Recently, Lu et al. (2016) identified 10,820 
lncRNAs that were associated with different abiotic 
stresses. Similarly, Zou et al. (2016) also identified 
a total of 5996 lncRNAs that were reported rapid 
and dynamic changes during early fibre and rapid 
elongation stages. NGS techniques were used for 
discovery of genes, regulatory sequences and non-
coding RNA for the improvement of sugarcane as a 
biofuel crop. In a recent study, six genotypes of sug-
arcane were studied and a total of 72,269 unigenes 
were identified. Out of which more than 28,788 
of these unigenes showed significant similarity to 
sorghum proteins indicating that both species share 
a higher degree of genetic lineage. In another study, 
transcriptome analysis of sugarcane during smut 
pathogen infection (Sporisorium scitamineum) 
identified 65,852 unigenes and most of the DEGs 
were related to metabolic pathways in resistant and 
susceptible genotypes (Que et al., 2014).

Recently, lncRNAs have been found to play 
an important role in gene regulation by acting as 
endogenous target mimics. The size of lncRNAs is 
usually more than 200 nucleotides in length (Chen, 
2009; Rinn and Chang, 2012). In plants, identi-
fication of long non-coding RNA is more recent 
and not as comprehensive compared to other 
eukaryotes (Ulitsky and Bartel, 2013; Zhang et al., 
2014). Non-coding RNA regulates the expression 
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Table 1.2 List of mRNA and lncRNA studies and NGS platforms used for sequencing in different crops

Number Crop Platform
Validation 
method Condition Reference

1 Glycine max Illumina – Fourteen diverse tissues Severin et al., 2010
2 Cucumis sativus Roche-454 – Flower buds Guo et al., 2010
3 Lens culinaris Roche 454 – Developmental stages Kaur et al., 2011
4 Daucus carota Illumina – Root and leaf tissues Iorizzo et al., 2011
5 Oryza sativa Illumina qRT-PCR Biotic stress Kawahara et al., 2012
6 Oryza sativa Illumina qRT-PCR Biotic stress Bagnaresi et al., 2012
7 Triticum 

aestivum
Illumina – Root and shoot tissue 

from seedlings
Schreiber et al., 2012

8 Arachis 
hypogaea

Illumina qRT-PCR Immature seeds Zhang et al., 2012

9 Cyanococcus Illumina qRT-PCR Fruit skin and pulp Li et al., 2012
10 Cyanococcus Roche 454 qRT-PCR Cold acclimation Rowland et al., 2012
11 Carnation GS FLX 454 

pyrosequencing
– Flower bud, flowers, 

leaves and stem (ethylene 
treated and control)

Tanase et al., 2012

12 Allium sativum Illumina – Vegetative buds Sun et al., 2012
13 Saccharum Illumina – Leaves Vicentini et al., 2012
14 Chrysanthemum Illumina – Stems and leaves Wang et al., 2013
15 Chrysanthemum Illumina – Dehydration stress Xu et al., 2013
16 Allium cepa Roche-454 – Vernalized bulbs, leaves, 

unopened umbels, bulbs, 
and roots

Duangjit et al., 2013

17 Oryza sativa Illumina qRT-PCR Biotic stress Chao et al., 2014
18 Oryza sativa Illumina  qRT-PCR Anthers before flowering, 

pistils before flowering, 
spikelets and shoots

Zhang et al., 2014 

19 Hordeum 
vulgare

Roche 454 – Drought stress Bedada et al., 2014

20 Eleusine 
coracana

Ion torrent qRT-PCR Salinity stress Rahman et al., 2014

21 Cicer arietinum Illumina – Vegetative and 
reproductive tissues

Singh and Jain, 2014

22 Mangifera indica Illumina qRT-PCR Hot water treatment Luria et al., 2014
23 Oryza sativa Illumina qRT-PCR Developmental stages Wang et al., 2015b
24 Zea mays Illumina qRT-PCR and 

polyclonal 
antibody

Endosperm development Li et al., 2015

25 Oryza sativa and 
Zea mays

Illumina qRT-PCR Flower buds, flowers, flag 
leaves, roots, (before and 
after flowering stage), 
shoot and root tissues

Wang et al., 2015a

26 Oryza sativa and 
Zea mays

Illumina qRT-PCR Flower bud, milk grain 
and mature seed

Wang et al., 2015a

27 Triticum 
aestivum

Illumina – Root, leaf, stem, spike, 
and grain at three 
developmental stages 

Pingault et al., 2015

28 Hordeum 
vulgare

Illumina qRT-PCR Boron treatment Tombuloglu et al., 
2015

29 Medicago 
truncatula 

Illumina qRT-PCR Osmotic and salt stress Wang et al., 2015
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Number Crop Platform
Validation 
method Condition Reference

30 Mangifera indica Illumina qRT-PCR Fruit ripening Dautt-Castro et al., 
2015

31 Gossypium Illumina qRT-PCR Cotton fibre Wang et al., 2015c
32 Oryza sativa Illumina qRT-PCR Selinium and salicylic 

acid priming
Hussain et al., 2016

33 Sorghum bicolor SMRT(single-
molecule real-
time) cells (Pacific 
Biosciences)

qRT-PCR, 
cloning and 
sequencing

Seedlings Abdel-Ghany et al., 
2016

34 Sorghum bicolor Pacific Biosciences 
SMRT long-read 
isoform sequencing 

RT-PCR 8 day old seedlings Abdel-Ghany et al., 
2016

35 Helianthus 
annulus

Illumina qRT-PCR Disc florets at R2 
development stage 

Florez-Zapata et al., 
2016

36 Arabidopsis 
thaliana 

Illumina qRT-PCR, 
RACE, 
western blot

Biotic stress Gao et al., 2016

37 Actinidia 
deliciosa

Illumina qRT-PCR Fruit samples from five 
5-year-old plants

Tang et al., 2016

38 Raphanus 
sativus

Illumina qRT-PCR Taproot sample at 
developmental stages

Yu et al., 2016

39 Cicer arietinum Illumina qRT-PCR Salinity and drought 
stress

Garg et al., 2016

40 Mangifera indica Roche 454 and 
Illumina 

qRT-PCR Fruit ripening Srivastava et al., 2016

41 Actinidia 
chinensis

Illumina RT-PCR and 
qRT-PCR

Fruit samples from 
5-year-old plant and 20, 
120 and 127 days after 
pollination (DAP)

Tang et al., 2016

42 Rosa Illumina Hiseq qRT-PCR Cold stress Zhang et al., 2016
43 Allium cepa Illumina qRT-PCR Floral inflorescences Liu et al., 2016a
44 Raphanus 

sativus
Illumina qRT-PCR Bolting and flowering 

stage root, stem, leaf, 
flower, floral buds

Nie et al., 2016

45 Raphanus 
sativus

Illumina qRT-PCR Salt stress Sun et al., 2016

46 Brassica napus Illumina qRT-PCR Biotic stress Joshi et al., 2016 
47 Helianthus Illumina – Non-meiosis versus 

meiosis-specific cell
Flórez-Zapata et al., 
2016

48 Gossypium Illumina qRT-PCR Drought stress Lu et al., 2016
49 Gossypium Illumina qRT-PCR Cotton fibres and leaves Zou et al., 2016 

level of target genes via various molecular mecha-
nisms (Quan et al., 2015; Zhu and Wang, 2012). 
lncRNAs act as a regulator in important biological 
processes by enhancing target site accessibility 
to RNA polymerases, formation of RNA-dsDNA 
triplex, inhibition of RNA polymerase activities as 
well as regulation of transcription factors (Lipshitz 

et al., 1987; Nguyen et al., 2001; Willingham et al., 
2005; Martianov et al., 2007; Hirota et al., 2008; 
Mariner et al., 2008). They also have a role in post-
transcriptional modulations of mRNA. lncRNAs 
are found to have role in regulating complex gene 
regulatory networks involved in plant develop-
ment and stress management (Crespi et al., 1994; 

Table 1.2 Continued
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Ding et al., 2012; Heo and Sung, 2011; Zhang et 
al., 2014).

Identification of small non-coding 
RNA by NGS technology
Small RNAs (sRNAs) are another important class 
of RNA molecules of 21–24 bases long and include 
microRNAs (miRNAs), short interfering RNAs 
(siRNAs), transacting siRNAs (ta-siRNAs) and 
cis/trans-natural antisense small-interfering RNAs 
(nat-siRNAs). These small RNAs are non-coding, 
essential entities that regulate gene expression 
in epigenetic processes almost in every domain 
of life (Ruiz-Ferrer and Voinnet, 2009; Zhang et 
al., 2011). The sequence alterations in miRNA or 
other small non coding RNAs can be mapped by 
genomic sequencing or RNA-seq, while the expres-
sion levels can be determined by RNA-seq or deep 
sequencing or expression microarrays (Singh et al., 
2012). The alliance of gene expression data with 
a small RNA data set will help to understand how 
different biological processes coordinate together 
in a cellular context ( Jain, 2012). In recent times, a 
large number of studies involving NGS technology 
have been reported primarily to identify novel as 
well as conserve miRNA, along with their targets 
under different stresses or developmentally regu-
lated conditions (Table 1.3) sRNAome analysis of 
Arabidopsis thaliana revealed while expression of 
miR156, miR399, miR778, miR827, and miR2111 
was induced, yet, expression of miR169, miR395, 
and miR398 was repressed under phosphate (Pi) 
deficiency indicating that these miRNAs may be 
involved in Pi uptake in Arabidopsis (Hsieh et al., 
2009). In Brachypodium distachyon, a model crop, 
three conserved and 25 novel miRNAs showed 
significant change of expression in response to cold 
stress and differential expression profiling of 94 
conserved miRNAs from 28 families during vegeta-
tive and reproductive tissues (Zhang et al., 2009; 
Wei et al., 2009). A review describing the study of 
various aspects of miRNA using deep sequencing 
tools was documented for further information 
(Yang and Li, 2012).

Agricultural crops

Rice being a major cereal crop, various transcrip-
tome studies to identify non-coding RNAs have 
been reported. NGS was used to categorize differ-
ent classes of small RNA regulatory elements from 

mature rice grain and seedlings (Heisel et al., 2008; 
Guo et al., 2012; Campo et al., 2013; Li et al., 2014). 
These studies together signified the role of miRNAs 
in rice blast disease and stripe virus resistance. 
Besides biotic factors, a study involving abiotic 
stresses has also been reported and elucidated 294 
known and 539 novel heat-responsive miRNAs 
during heat stress (Li et al., 2015b).

In maize, the epigenome was critically scruti-
nized by NGS technologies for its relationships 
to mRNA and small RNA transcriptomes (Wang 
et al., 2009; Liu et al., 2014; Zhou et al., 2016) to 
understand the molecular aspects underlying maize 
ear development and to elucidate the rice black-
streaked dwarf virus-responsive pathway in maize.

Wheat being hexaploid, its genome is con-
sidered to be genetically complex. In an earlier 
NGS-based study on wheat, 58 miRNAs compris-
ing 43 miRNA families were identified, of which 20 
families were conserved and 23 were found to be 
novel (Yao et al., 2007). Further, in another study, 
170 conserved miRNAs representing 25 families 
and 23 novel miRNAs were also identified (Wei et 
al., 2009). Further, in wheat, a total of 2076 small 
RNAs were identified (Yao et al., 2010). Similarly 
a set of wheat miRNAs which play roles in regulat-
ing wheat response to powdery mildew pathogen 
Erysiphe graminis f. sp. tritici and heat stress were 
also identified using high-throughput sequencing 
(Xin et al., 2010). Tang et al. (2012) analysed the 
male sterility system of thermosensitive genic male 
sterile (TGMS) lines of wheat and concluded that 
miR167 and tasiRNA-ARF play a role in the devel-
opmental response to cold stress and the regulatory 
pathways of sRNA that were linked with male ste-
rility. A brief summary of work related to wheat is 
given in Table 1.3.

Though initial efforts were concentrated to 
study the small RNAs in cereals, of late efforts are 
also being made to understand the role of these 
RNA molecules in pulse, oilseeds and other crops 
of economic importance. In Medicago truncatula, an 
important model legume, a small RNA library was 
generated and conserved and novel small RNAs 
(miR1507, miR2118, miR2119 and miR2199) 
were identified. They also identified three novel 
transcripts encoding TIR-NBS-LRR disease resist-
ance ( Jagadeeswaran et al., 2009). The miRNA 
(miR408) could induce drought tolerance in 
chickpea ( Jain et al., 2014; Srivastava et al., 2015; 
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Table 1.3 Small-RNA studies and NGS platforms used for sequencing in different crops

Number Crop Platform used Validation method
Experimental 
conditions Reference

1 Triticum aestivum L. 
line 3338 w

454 Life Sciences™ 
technology

RNA gel blot 
analysis and RT-
PCR

Wheat and 
monocot-specific 
miRNAs

Yao et al., 2007

2 Oryza sativa 
spp. japonica cv. 
Nipponbare

454 Life Sciences 
platform

Small RNA blotting 
and 5′RACE

Mature rice grain 
and seedlings

Heisel et al., 
2008

3 Solanum 
lycopersicum

454 Life Sciences™ 
technology

Northern blotting 
and 5′RACE

Fruit ripening Moxon et al., 
2008

4 Arabidopsis thaliana 
ecotype Columbia

Solexa sequencing 
technology (Illumina)

RLM-5ˈRACE Phosphate 
deficiency

Hsieh et al., 
2009

5 Medicago truncatula 
Gaertner cv. 
Jemalong

454 Life Sciences™ 
technology

Small RNA blotting 
and 5′RACE

Legume specific Jagadeeswaran 
et al., 2009

6 Zea mays inbred 
line B73

Solexa Sequencing Computational 
validation

Tissue-specific 
miRNA distribution

Wang et al., 
2009

7 Brachypodium 
distachyon BD21-3 
cv. Chinese Spring

Solexa Sequencing Northern blotting, 
RT-PCR and 
5′RACE

vegetative and 
reproductive growth 
stage

Wei et al., 2009

8 Brachypodium 
distachyon

Illumina-Solexa 1 G 
Genetic Analyzer

RNA gel blot 
analysis

Cold stress Zhang et al., 
2009

9 Triticum aestivum L 
line JD8-Pm30 

Solexa sequencing RNA gel blot 
analysis and qRT-
PCR

Powdery mildew 
infection and heat 
stress

Xin et al., 2010

10 Triticum aestivum L 454 Life Sciences™ 
technology

Northern blotting 
and RT-PCR

heat, cold, salt and 
dehydration stress

Yao et al., 2010

11 Arachis hypogaea L. 
cultivar Huayu19

Solexa 1G Genome 
Analyzer

Stem–loop RT-PCR 
and qRT-PCR

Tissue- and/
or growth stage 
specific expression

Chi et al., 2011

12 Glycine max inbred 
line of ‘HJ-1’

Solexa sequencing Northern blot 
analysis and qRT-
PCR

Drought, salinity, 
and alkalinity stress

Li et al., 2011

13 Carthamus 
tinctorius L.

Illumina Solexa 
Genome Analyzer

Computational 
validation

Tissue specific 
(Seed, leaf and 
petal)

Li et al., 2011

14 Glycine max cv. 
Heinong44

Solexa sequencing RT-PCR and RLM-
5′RACE

miRNA biogenesis Song et al., 
2011

15 Brassica rapa ssp. 
chinensis

Illumina Genome 
Analyzer

Northern blot 
analysis, qRT-PCR, 
and cRT-PCR

Heat responsive Wang et al., 
2011

16 Brassica rapa ssp. 
chinensis

Illumina Genome 
Analyzer

Northern Blotting, 
RT-PCR and 
5′RACE

Heat stress Yu et al., 2012

17 Oryza sativa L. 
japonica. cv. 
Nipponbare

Illumina Solexa 
sequencing

sRNAs gel blot 
analysis and qRT-
PCR

Virus infected Guo et al., 2012

18 Triticum aestivum 
TGMS line BS366

Illumina Genome 
Analyzer

RLM-5′RACE and In 
situ hybridisation

Cold stress Tang et al., 2012

19 Brassica napus line, 
Westar

Solexa sequencing 
(Illumina)

qRT-PCR and RLM-
5ˈRACE

miRNAome Xu et al., 2012

20 Oryza sativa L. cv. 
Nipponbare, Oryza 
glaberrima and wild 
rice species

454 Life Sciences 
Technology and 
Microarray

Northern Blotting, 
qRT-PCR 

Magnaporthe oryzae 
responsive

Campo et al., 
2013
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Number Crop Platform used Validation method
Experimental 
conditions Reference

21 Carthamus 
tinctorius L.

Illumina HiSeq™ 
2000 

Northern blot 
hybridization, stem–
loop RT-PCR

Developing seeds 
with high linoleic 
and oleic acid 
content

Cao et al., 2013

22 Saccharum spp. 
cultivars RB867515 

Solexa platform Stem–loop RT-PCR 
and qRT-PCR

Drought responsive Gentile et al., 
2013

23 Brassica napus L. 
cv.DH12075 

SOLiD v3 
sequencing

qRT-PCR Seed maturation Huang et al., 
2013

24 Triticum aestivum L. Pyrosequencing Small RNA blot 
analysis

siRNA-mediated 
silencing of TAS3 
transcripts

Li et al., 2013

25 Gossypium hirsutum Illumina Genome 
Analyzer

qRT-PCR and RLM-
5ˈRACE

Somatic 
embryogenesis

Yang et al., 
2013

26 Solanum melongena 
L.

Illumina/Solexa qRT-PCR Verticillium dahliae 
infection

Yang et al., 
2013

27 Solanum tuberosum 
group Andigena (line 
ADG573)

Illumina GAIIX 
sequencer

Computational 
validation

miRNAome Zhang et al., 
2013

28 Miniature Tomato 
cv. Micro-Tom

Illumina Solexa 
system

qRT-PCR Cucumber mosaic 
virus responsive

Feng et al., 
2014

29 Cicer arietinum 
L. genotype 
ICC4958

Illumina Genome 
Analyser

qRT-PCR miRNAome profiling Jain et al., 2014

30 Solanum 
tuberosum cv. Kufri 
Chandramukhi

Illumina GAIIx qRT-PCR and RLM-
RACE

Different 
developmental 
stages

Lakhotia et al., 
2014

31 Oryza sativa Illumina sequencing sRNAs gel 
blot analysis, 
overexpressing 
transgenic and qRT-
PCR

Magnaporthe oryzae 
infected (0, 12, 24, 
48, 72 hpi)

Li et al., 2014

32 Zea mays inbred 
lineB73

Solexa Sequencing qRT-PCR Maize ear 
development

Liu et al., 2014

33 Coffea canephora Illumina HiSeq 2000 Computational 
validation

miRNAome Loss-Morrais et 
al., 2014

34 Brassica napus L. Solexa sequencing 
(Illumina)

qRT-PCR and RLM-
5′RACE

Verticillium 
longisporum 
infection

Shen et al., 
2014

35 Broccoli (Brassica 
oleracea var. italica)

Illumina HiSeq qRT-PCR Salinity stress Tian et al., 2014 

36 Poncirus trifoliata 
(L.) Raf.

Illumina Genome 
Analyser

qRT-PCR Cold responsive Zhang et al., 
2014

37 Solanum tuberosum 
tetraploid cultivar 
‘Zihuabei’.

Solexa sequencing 
technology

qRT-PCR Drought stress Zhang et al., 
2014

38 Solanum 
linnaeanum, brinjal

Illumina GAIIx qRT-PCR Salt stress Zhuang et al., 
2014

39 Vigna unguiculata Illumina Genome 
Analyzer

Northern blot 
hybridization

Drought stress Barrera-
Figueroa et al., 
2011

40 Salicornia europaea Illumina sequencing qRT-PCR and RLM-
5′RACE

Salt stress Feng et al., 
2015

Table 1.3 Continued
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Number Crop Platform used Validation method
Experimental 
conditions Reference

41 Brassica napus L. 
cv.DH12075

SOLiD v3 
sequencing system

qRT-PCR Seed maturation Hayzadeh et al., 
2015

42 Rosa multiflora 
Thunb.

Solexa-Illumina 
platform

RT-PCR Pathogen stress 
(Virus and Viroids)

He et al., 2015

43 Cajanus cajan L. Whole genome 
shotgun sequencing

Computational 
validation

Plant growth and 
development

Kompelli et al., 
2015

44 Oryza sativa cultivar 
Nagina 22

Ion Proton 
Sequencer

qRT-PCR Heat stress Li et al., 2015

45 Cymbidium 
ensifolium ‘Tiegusu’

Solexa technology RT-qPCR Floral development Li et al., 2015

46 Turnip cultivar 
‘Chang Huang Man 
Jing’

Illumina HiSeqTM 
2000

qRT-PCR Tuberous root 
development

Li et al., 2015

47 Raphanus sativus 
L. advanced inbred 
line ‘NAU-YH’

Solexa sequencing 
(Illumina) 

RT-qPCR Chromium stress Liu et al., 2015

48 Solanum 
pimpinellifolium 
L3708 

HiSeq 2000 
Sequencing System

qRT-PCR Phytophthora 
infestans (Pathogen 
resistance)

Luan et al., 2015

49 Triticum aestivum L. 
cv. Hanxuan10 and 
Zhengyin1 w

Genome Analyzer 
IIx System

Northern blotting, 
RT-PCR and qPCR

Dehydration stress Ma et al., 2015

50 Raphanus sativus 
L. inbred line ‘NAU-
LU127’

Illumina HiSeq™ 
2000

RT-qPCR Bolting and 
flowering time 
related

Nie et al., 2015

51 Camelina sativa Illumina HiSeq 2000 RT-PCR Different 
developmental 
stages

Poudel et al., 
2015

52 Brassica napus 
cultivars Tapidor 
and Ningyou7

Illumina HiSeq 2000 qRT-PCR and RLM-
RACE

Double haploid lines Shen et al., 
2015

53 Cicer arietinum L. 
genotype IC4958

Illumina Genome 
Analyser

Small RNA gel blot 
and 5ˈRACE

Phasi-siRNAs 
discovery

Srivastava et al., 
2015

54 Raphanus sativus 
L. advanced inbred 
line ‘NAU-YH’

Illumina HiSeq™ 
2000

RT-qPCR Salinity stress Sun et al., 2015

55 Brassica rapa ssp. 
pekinensis

Solexa platform qRT-PCR and 
Microscopy

Pollen abortion and 
Bud development

Wei et al., 2015

56 Gossypium hirsutum 
L. cultivar TM-1

Illumina HiSeq 
high-throughput 
sequencing platform

Stem–loop RT-PCR 
and qRT-PCR

Drought- and 
salinity-responsive

Xie et al., 2015

57 Solanum 
lycopersicum L. cv. 
‘Ailsa Craig’

Illumina Genome 
Analyzer l

qRT-PCR Tomato pedicel 
abscission

Xu et al., 2015

58 Arachis hypogaea 
L. Luhua 14 and A. 
glabrata

Illumina Genome 
Analyzer

qRT-PCR Pathogen 
resistance Ralstonia 
solanacearum, 
bacterial wilt

Zhao et al., 
2015

59 Camellia sinensis 
(L.) O. Kuntze cv. 
lLongjing 43’ 

Illumina HiSeq 2000 
platform

qRT-PCR Chilling and freezing Zheng et al., 
2015

60 Ipomoea batatas 
L.,cv. Ningzishu 1

Solexa sequencing 
technology

Computational 
validation

miRNAome Bian et al., 2016

Table 1.3 Continued

Curr. Issues Mol. Biol. Vol. 27



Next-generation Sequencing Technologies in Crop Plants | 15

Number Crop Platform used Validation method
Experimental 
conditions Reference

61 Brassica napus Illumina HiSeq2000 Computational 
validation

Synthetic variety Fu et al., 2016

62 Camellia sinensis Illumina HiSeq2500 qRT-PCR Drought stress Liu et al., 2016b

63 Moringa oleifera Illumina HiSeq qRT-PCR and 
Western blotting

Pharmacological 
potential properties

Pirrò et al., 2016

64 Solanum tuberosum 
Zhuangshu No. 3

Illumina HiSeq2000 qRT-PCR Secondary 
metabolism

Qiao et al., 2016

65 Raphanus sativus 
L. advanced inbred 
line ‘NAU-YH’

Illumina HiSeq 
system

RT-qPCR Taproot thickness Yu et al., 2016

66 ‘Summer Black’ 
grapevine (hybrids 
of V. vinifera and V. 
Labrusca

Solexa sequencing 
(Illumina)

qRT-PCR and RLM-
RACE

In response to 
exogenous ethylene

Zhao et al., 
2016

67 Zea mays 
inbredlineB73

Illumina HiSeq qRT-PCR Black-streaked 
dwarf virus, maize 
rough dwarf disease 
(MRDD) 

Zhou et al., 
2016

68 Solanum 
lycopersicum ‘Rui 
Xin’

Illumina HiSeq2500 Computational 
validation

Chilling injury Zuo et al., 2016

Table 1.3 Continued

Hajyzadeh et al., 2015). Similarly novel miRNAs 
and their targets involved in stress response were 
also identified in pigeonpea and chickpea (Kompelli 
et al, 2015; Barrera-Figueroa et al., 2011).

Oilseed crops, largely grown for human con-
sumption, are important for Indian agriculture. 
One of the important oilseed crops, soybean, is 
grown all over the world. To understand the regula-
tory network of miRNAs and their functions during 
seed development as well as to the miRNAome 
profiling associated with abiotic stress responses 
in soybean, NGS technology was used to identify 
the differentially expressed miRNAs (Song et al., 
2011; Li et al., 2011b). Besides soybean, members 
of Brassicaceae family, specifically Brassica napus, 
is a major source of vegetable oil. There are many 
reports in Brassica napus, which used NGS tech-
niques to decipher various molecular mechanisms 
during different stages of growth, during their 
interaction with biotic and abiotic stresses, oleic 
acid content, etc. (Table 1.3). Commercial or cash 
crops are another important category belonging to 
agricultural crops. Some of the major crops of India 
on which miRNA studies have been conducted are 
cotton (Gossypium hirsutum), tea (Camellia sinensis 

L.), Coffea canephora and sugarcane. In cotton, 
using NGS tools, 25 novel miRNAs that were asso-
ciated with somatic embryogenesis were identified 
(Yang et al., 2013). Similarly, miRNAs in response 
to drought and salinity stress were also studied in 
cotton, and miRNAs which played role in drought 
and fibre development were identified (Xie et al., 
2015). A brief summary of works is given in Table 
1.3.

Horticulture crops

Besides agricultural crops, horticultural crops are 
also a significant component of farming systems 
and sources for many dietary supplements. Various 
studies based on NGS technologies were conducted 
to identify and characterize miRNAs in these crops 
(Table 1.3). For instance, miRNAs involved in 
tomato fruit during ripening, Phytophthora infec-
tions and cucumber mosaic resistance, and chilling 
injury were identified (Moxon et al., 2008; Luan et 
al., 2015; Zou et al., 2016). Similarly, Verticillium 
dahlia responsive miRNAs in Solanum linnaeanum 
(Yang et al., 2013), and those involved in drought 
stress in Solanum tuberosum (Lakhotia et al., 2014) 
were also identified. Overall, small non-coding 
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RNAs is a broad class of regulatory RNAs, and 
behaves as protein counterparts involved in 
regulating post transcriptional gene silencing and 
translational repression. Deep sequencing employs 
efficient, economical, massive parallel sequencing, 
generating millions of small RNA sequence reads 
from a given sample. sRNAome by deep sequenc-
ing quantifies absolute abundance and allows 
for the discovery of novel microRNAs that have 
escaped previous cloning and standard sequencing 
efforts (Creighton et al., 2009). Some miRNAs 
can significantly affect plant traits, including virus 
resistance, nematode resistance, drought and salin-
ity tolerance, heavy metal detoxification, biomass 
yield, grain yield, fruit development and flower 
development. Therefore, miRNAs are considered 
as a newly identified gene resource for the genetic 
improvement of crop plants (Zheng and Qu, 2015). 
Therefore, these all studies which analysed and 
identified miRNAs have the potential to enhance 
food security by helping breed crop cultivars with 
improved agronomic traits (Zhou and Luo, 2013). 
Studies have indicated that small non-coding RNA 
loci, like protein-coding genes, could be targets of 
domestication selection and play an important role 
in crop domestication, and improvement, abiotic 
stress, plant–pathogen interactions and breeding 
useful traits (Ruiz-Ferrer and Voinnet, 2009; Wang 
et al., 2010).

NGS and metagenomics of 
plant–microbe interaction
Microbes are the most abundant living organisms 
on earth. In spite of their abundance, only small 
fraction of them have been explored and very few of 
them can be grown in laboratory conditions. Over-
all, large chunks of the microbial population are out 
of the reach of scientists largely due to an inability 
to culture them under laboratory conditions. Quite 
intriguingly, it has been observed that microorgan-
isms growing on media and those directly obtained 
from natural samples showed very large differences 
in their number, displaying so called the great plate 
count anomaly (Staley et al., 1985). Therefore, 
lack of standard culture media and growth condi-
tions has largely led to the restricted scientific 
exploration of these microbial populations. In the 
context of foregoing observations, it becomes nec-
essary to study the microbial populations in their 

natural conditions so as to capture the microbial 
community or metagenome (Woese et al., 1987). 
Metagenome is the use of advanced techniques to 
analyse microbial communities taken directly from 
the natural sources without growing them under 
laboratory conditions (Chen et al., 2005).

Approaches used in metagenomics
Broadly two approaches are used to study 
metagenomics, i.e. sequence-based metagenomics 
and function-based metagenomics. The sequence-
based study depends on identifying the complete 
genetic sequence of microorganisms present in the 
sample. In most of the studies targeting microbial 
communities, 16S rRNA gene sequences were 
used to identify the species. This method is useful 
to study the evolutionary conservation and phy-
logenetic analysis of the microbes present in the 
samples (Claesson et al., 2010; Creer et al., 2016). 
On the contrary, function-based metagenomics 
explores the products of the microbial community 
to study that specific community (Coughlan et al., 
2015). Subsequently it was sequencing techniques, 
particularly the introduction of NGS techniques, 
that revolutionized the plant–microbial metagen-
omic studies. This sequencing technology opened 
a new way for discovering and analysing these 
organisms at genome level, which is a culture 
independent technology that utilizes a combina-
tion of various research methods, specifically NGS 
and bioinformatics tools. Plants and microbes are 
in continuous interaction with each other in the 
environment. The association of microbes with the 
plant can be of endophytic (inside the plant) or 
epiphytic (attached to the plant). Plant–microbial 
associations could be positive interactions, neutral 
associations or negative interactions (pathogens). 
Almost every part of a plant is inhabited by a micro-
bial community, yet rhizosphere and phyllosphere 
are the major sites for plant microbe interactions 
for most of the microbes. Microbiota of these two 
regions (rhizosphere and phyllosphere) are so 
closely associated with plants that even they are 
called as second genome of the plant (Berendsen 
et al., 2012). Several studies have been carried 
out to analyse the microbiome of various plants 
sampled from the phyllosphere, rhizosphere, and 
various parts, and were found beneficial to the 
plant (Lugtenberg et al., 2009; Porras-Alfaro et 
al., 2011; Vorholt et al., 2012). The details of the 
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metagenomics studies aimed at plant–microbial 
interactions and plant microbiota are given in 
Tables 1.4 and 1.5. Recently, the 454 NGS tech-
nique was used to study the diversity, community 
structure, and dynamics of endophytic bacteria in 
different plant species and it found four classes of 
Proteobacteria with Alphaproteobacteria as the dom-
inant class and revealed that host plant species had 
greater influences on type of bacterial communities 
(Ding and Melcher, 2016).

Besides their application in metagenomics, 
NGS techniques also have great applications in the 
study of metatranscriptomics. Metatranscriptomics 
includes analysis of gene transcripts directly isolated 
from the entire community of organisms. Metatran-
scriptome study is also referred to as environmental 
transcriptomes, microbial community gene expres-
sion profiles, microbial community RNAs and 
whole community transcripts. The metatran-
scriptome field has opened a door to study 
various aspects around environmental community, 

i.e. active community members and metabolic 
pathways (Urich et al., 2008). The metatranscrip-
tomics approach has been used to identify various 
genes actively involved in Eichhornia crassipes and 
Fusarium verticillioidies association, in strawberry 
plants for defining the fungal communities associ-
ated with different organs of plants (Luo et al., 2015; 
Abdelfattah et al., 2016). Recently, a study combin-
ing NGS and metagenomic analysis was conducted 
to generate large number of cDNAs using model 
system tomato pepino mosaic virus. Subsequently, 
the same approach was used in the study of globe 
amaranth (Gomphrena globose) infected with an 
unknown pathogen. Therefore, this method hastens 
the process of development of routine assays for 
new viral pathogens (Adams et al., 2009).

NGS technique was also used for sequencing 
whole viral genomes to undertake plant metagen-
omic studies to discover new viruses. Adams et al. 
(2013) identified the presence of Maize chlorotic 
mottle virus and Sugarcane mosaic virus, causal agents 

Table 1.4 Plant–microbial interaction studies using NGS-based metagenomics

Number Host
Interacting 
partner Environment Conclusions Platform Reference

1 Wheat Azospirillum 
brasilense

Rhizosphere Up-regulated genes related 
to nutrient uptake, cell cycle, 
and nitrogen assimilation that 
enhance productivity and 
growth

SOLiD Camilios-
Nato et al., 
2014

2 Wheat Microbiome Rhizosphere Fertilizers with high nutrient 
availability and long-term 
storage leads to less microbe 
interaction with crop 

454 
Pyrosequencing 

Ai et al., 
2015

3 Eichhornia 
crassipes

Fusarium 
verticillioidies 

Rhizosphere Mutualistic action of plant 
and fungi was efficient for 
bioremediation

Illumina Hi Seq 
2500

Luo et al., 
2015

4 Potato Burkholderia 
phytofirmans 
PsJN

Rhizosphere Stress signal perceived by 
plant are also affects plant 
endophyte association 

Illumina Hi Seq 
2000

Tezerji et 
al., 2015

5 Soybean Mycovirus Phyllosphere Novel mycoviruses were 
identified 

Illumina Hi Seq 
2500

Marzona et 
al., 2016

6 Strawberry Fungi Phyllosphere Diverse fungal organisms 
inhabits on plants and 
Botrytis and Cladosporium 
were dominant.

454 GS 
FLX+System

Abdelfattah 
et al., 2016

7 Rice S. epidermidis Rhizosphere S. epidermidis of plant and 
animal origin are diversified at 
genome level 

Illumina MiSeq Chaudhry 
et al., 2016

8 Non-
cultivated 
plants 

Endophytic 
bacteria 

Phyllosphere Proteobacteria found to be 
highest phylum (85.42%). 
Acidobacteria (0.59%) lowest 
on leaf of all five plants

454 
Pyrosequencing

Ding et al., 
2016
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of lethal necrosis in Kenyan maize using NGS 
(Wangai et al., 2016). A detailed review describing 
the various roles of NGS in viral diagnostics has 
already been published by Boonham et al. (2014).

NGS technology has also been used successfully 
to determine the begomoviral genome and their 
associated satellites from begomovirus-affected 
tomato and okra plants by using metagenomics 
(Idris et al., 2014). In another study, NGS and 
metagenomics approaches together were used to 
study native bacterial microflora diversity in dif-
ferent anatomical organs of Solanum lycopersicum 
(Ottesen et al., 2013). In tomato, the root micro-
biome was studied in order to understand the 
endophytes and their association with root-knot 
nematodes (Meloidogyne spp.) (Tian et al., 2015). 
Similarly in rice, a metagenomic rice endophyte 
DNA library was constructed and further 16S 
rRNA gene sequence information was studied (Ses-
sitsch et al., 2012). Similarly, metagenomic analysis 
of olive-knot to decipher the role of different bacte-
rial species in the disease establishment has been 
reported (Passos da Silva et al., 2014). Even the role 
of the enzymatic repertoire (glycoside hydrolases) 
of a microbial community in degradation of crude 

cotton biomass was reported using NGS-based 
metagenomics approach (Zhang et al., 2016).

NGS applications in exome and 
captured sequencing
Selection of genomic regions of interest and enrich-
ment of these regions is called captured sequencing. 
This technology is a revolutionary process for the 
selective enrichment of targeted genomic regions 
from the complex genomic DNA. Targeted-capture 
is used to enrich the sequences of interest before 
carrying out NGS, such as repetitive sequences 
(Syring et al., 2016), exome (Neves et al., 2013), 
and gene space regions (Zhou and Holliday, 2012). 
This technology permits the isolation of target 
loci from the background of the entire genome. In 
comparison with other sequencing technologies, 
captured sequencing is inexpensive, quick and 
simple. The scale of capture can range from several 
targeted loci to over a million target regions (Agi-
lent 2011; Microarray 2011; NimbleGen 2011), 
making it adaptable for both small-scale and large 
scale projects. This technology holds promise for 
plant genomes because they are large, complex 

Table 1.5 Studies of plant associated microbiota using NGS techniques

Number Host Environment Conclusions Platform References

1 Soybean Phyllosphere Composition of microbiota and proteomes 
remain consistent in different plants species 

Roche 454 Delmotte et 
al., 2009

2 Rice Phyllosphere 
and 
Rhizosphere 

Phyllosphere and rhizosphere region analysis 
to identify bacteria and archea in association 
with rice 

Roche 454 Knief et al., 
2012

3 Tamarisk, 
soybean, 
Arabidopsis 
thaliana

Phyllosphere Phyllosphere contains different groups 
of phototrophic organisms that are 
phylogenetically diverse

Roche 454 Atamna-
Ismaeel et 
al., 2012

4 Barley Rhizosphere Mineral phosphate solubilization genes were 
identified 

Roche 454 Chhabra et 
al., 2013

5 Lotus Rhizosphere No major microbial communities changes 
with respect to phytic acid utilization. Phytic 
acid utilization genes were identified 

Roche 454 Unno and 
Shinano, 
2013

6 Tomato Phyllosphere Different organs of plants have distinct 
microbial communities 

Roche 454 GS 
Titanium FLX

Ottesen et 
al., 2013

7 Soybean Rhizosphere Plants prefer a specific microbial community 
beneficial to its growth and function

Roche 454 
GS-FLX

Mendes et 
al., 2014

8 Aloe vera Rhizosphere Firmicutes, Actinobacteria and Bacteriodetes, 
four prominent phyla were identified as 
beneficial for bioactive compound production

Illumina MiSeq Akinsanya 
et al., 2015

9 Genlisea 
species

Phyllosphere Complex food interaction between plant 
Genlisea and its entrapped microbiome

Illumina Hi Seq 
2000

Cao et al., 
2015
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and contain a large amount of repetitive elements. 
In the present review, we are focusing on captured 
sequencing and exome sequencing. Exome are 
comprised of those sequences in DNA that code 
for a protein. It may also include the functional 
non-protein-coding sequences such as micro-
RNAs, long intergenic non-coding RNA, etc. as 
well as specific candidate regions. The technique 
to select and enrich the exomes followed by their 
sequencing using NGS technology is called exome 
sequencing (Warr et al., 2015). Initially, PCR was 
widely used to capture the sequence (Mamanova 
et al., 2010), followed by circularization of capture 
sequences using a suitable circularization technique 
such as molecular inversion probes (Nilsson et al, 
1994) and spacer multiplex amplification reaction 
(Krishnakumar et al., 2008), and hybridisation cap-
ture methods such as array-based hybrid selection 
(Albert et al., 2007; Okou et al., 2007) and solution 
hybridization capture (Gnirke et al., 2009).

Captured and exome sequencing 
studies across different crops
Application of this approach has gained momentum 
in plant systems recently. Targeted sequencing has 
been done in several crop and tree species using the 
captured method of sequencing (Table 1.6). Cap-
tured sequencing has been used to identify DNA 
polymorphisms in many polyploidy crop species. It 
is a powerful tool for studying evolution, population 
genetics and phylogeographic studies (Carstens 
et al., 2013; Smith et al., 2014; McCormack et al., 
2015). Various targeted studies conducted using 
NGS techniques have been detailed in Table 1.6.

Exome sequencing is most widely used targeted 
sequencing method that aims only an informative 
subset of the genome which varied between 1% and 
2% of the genome. Saintenac et al. (2011) captured 
3.5 Mb of the exonic sequence with coverage of 
3.5–7.0% of the exome and studied 3497 genes in 
durum wheat accessions. In the subsequent year, 
a novel exome capturing protocol for wheat based 
on a NimbleGen array was developed by Winfield 
et al. (2012). This protocol was used to sequence 
exomes of the eight wheat accessions by capturing 
a 56.5 Mb genomic region to identify SNPs for the 
genotypic classification of a segregating locus in 
polyploid wheat (Allen et al., 2013). Other studies 
in rice and wheat include screening of novel muta-
tions of rice and durum wheat, targeted capture of 
107 Mb of non-redundant regions in 62 lines of 
wheat, exome capture for rapid cloning of R-genes 
in hexaploid bread wheat and exome sequencing 
in the genomes of rice somaclonal variant (salt-
tolerant and drought-tolerant) and parental cultivar 
(Henry et al., 2014; Udomchalothorn et al., 2014; 
Jordan et al., 2015; King et al., 2015; Steuernagel et 
al., 2016).

In maize, exome capture was performed to 
understand endosperm filling and maturation 
and to create a population of 1788 lines ( Jia et al., 
2016). Exome capture kit has also been developed 
for barley (Hordeum vulgare L.) to selectively enrich 
61.6 Mb of protein coding sequence (Mascher 
et al., 2013) which was used for sequencing of 
exome X-ray mutagenized mutants and wild type 
genotypes to identify a candidate gene HvMND 
belonging to the CYP78A family that may affect 

Table 1.6 Plant genome capturing studies performed using NGS platforms

Number Plant
Genome 
coverage Method Reference

1 Triticum aestivum 56.5 Mb Nimblegen Array technology Winfield et al., 2012
2 Populus trichocarpa 

(black cottonwood) 
20.76 Mb Agilent technologies Zhou et al., 2012

3 Saccharum officinarum 5.8 Mb SureSelect Target Enrichment System Bundock et al., 2012
4 Saccharum hybrid 5.8 Mb SureSelect Target Enrichment System Bundock et al., 2012
5 Pinus taeda L. 21.7 Gbp Probe based and hybridization capture Neves et al., 2013
6 Fragaria vesca 100× Mycroarray, Mybait and Illumina Tennessen et al., 2013
7 Brassica napus 5.8 Mb SureSelectXT Schiessl et al., 2014
8 Pinus albicaulis 

(whitebark pine)
27 Gb Hybridization-based target capture Syring et al., 2016
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many agricultural traits (Mascher et al., 2014). 
Kono et al. (2016) discovered the distribution of 
hundreds of SNPs in cultivated and wild accessions 
of barley and soybean using exome sequencing. 
Hordium bulbosum is the wild relative of cultivated 
barley that has superior pathogen resistance and 
stress tolerance which can be crossed to cultivated 
barley genotype. There was lack of suitable molecu-
lar tools to characterize the genetic introgressions 
from H. bulbosum in order to select the beneficial 
variants and exclude the variants that were not 
important from breeding point of view. Recently 
many exome capture studies were reported in this 
crop for the development of genic markers and 
genome introgression studies (Wendler et al., 2014, 
2015). Russell et al. (2016) studied the environ-
mental adaptation in the georeferenced landraces 
and wild accessions by exome capture.

Besides, exome capturing in switchgrass (Pani-
cum virgatum), a potential biofuel feedstock crop, 
allowed assessment of the genome variation in its 
two primary ecotypes and identification of varia-
tion in CONSTANS (CO) and EARLY HEADING 
DATE 1 (EHD1) genes (Evans et al., 2014, 2015). 
Exome sequencing has also been reported in 
Eucalypts, black spruce (Picea mariana) and black 
cottonwood (Populus trichocarpa) (Zhou and Hol-
liday, 2012; Dasgupta et al., 2015; Pavy et al., 2016) 
primarily to study the genetic variation.

Next-genomics sequencing and 
molecular markers
The discovery and application of molecular mark-
ers for the detection and exploitation of DNA 
polymorphism is one of the most significant 
achievements in the area of molecular genetics 
and plant breeding. Applicability of these markers 
depends on various factors, viz. its physical proper-
ties and genomic location, the cost involved, ease 
of use, and degree of throughput required ( Jonah et 
al., 2011). Molecular markers are generally catego-
rized into two groups, macro-molecules (proteins 
and deoxyribonucleic acid) and biochemical 
constituents (secondary metabolites in plants). 
Secondary metabolites are restricted to the plants 
and its applicability is not as wide as DNA makers 
( Joshi et al., 2011). Among the macro-molecules, 
availability of protein markers is very limited and 
its analysis is difficult and more tedious than DNA 

markers. Among all the molecular markers, DNA 
markers are the most commonly used markers in 
the field of molecular genetics and plant breeding 
for various purposes. Single nucleotide polymor-
phisms (SNPs) have been recognized as potential 
markers of choice for genome-wide studies due 
to even distribution throughout the genome (like 
simple sequence repeats, SSRs), having the 
advantage over SSRs of being easily typed in 
large numbers (in high-throughput manner), and 
signifying variation in both coding and noncod-
ing regions of the genome (Altshuler et al., 2000; 
Brumfield et al., 2003; Slate et al., 2009). With the 
advancement of genome sequencing technologies, 
molecular markers with a known genomic loca-
tion are becoming more useful and applicable. The 
existence of various kinds of molecular markers, 
and differences in their principles, methodological 
adaptability, and application’s suitability need cau-
tious consideration in opting for one or more of 
such methods for crop improvement programmes. 
However, these markers are generally based on 
electrophoretic resolution of DNA fragments, 
which limits capturing of genetic differences and 
also this method cannot resolve genetic polymor-
phisms with less than 5 bp differences (Semagn et 
al., 2006). Genotyping of considerably large plant 
populations may take longer duration depend-
ing on how to do, what kind of maker system to 
adopt and how much throughput the adopted 
system could generate. NGS technology fulfils 
all the demands of the coming age plant breeding 
experiments. It is an efficient technology to develop 
low cost, high-throughput molecular markers for 
genotyping of such a large plant population in a 
short period. Using the NGS technologies, several 
molecular markers were developed to decipher the 
complex sequences at thousand loci in the genome 
of all the individuals of a large plant population 
sample. These NGS technologies include reduced-
representation libraries (RRLs; Gore et al., 2009; 
Hyten et al., 2010), complexity reduction of poly-
morphic sequences (CRoPS; Mammadov et al., 
2010), low coverage multiplexed shotgun genotyp-
ing (MSG; Andolfatto et al., 2011), restriction-site 
associated DNA sequencing (RAD-seq; Pfender et 
al., 2011), genotyping by sequencing (GBS; Elshire 
et al., 2011), high-density array (HDR) genotyping 
(Gunderson, 2009), and sequence-based polymor-
phic (SBP) marker technology (Sahu et al., 2012). 
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All of these methods comprise the following basic 
steps: the digestion of multiple samples of genomic 
DNA extracted from individuals or set of popula-
tions with one or more restriction enzymes; a 
selection or reduction of the resulting restriction 
fragments; and NGS of the final set of selected 
fragments, which should be less than 1 kb in size 
(avoiding the read-length limits of most of current 
NGS platforms, except PacBio); bioinformatic 
analysis to study the association between traits and 
called variants; and ultimately infer the biological 
importance from the analysed dataset. Variations 
in the resulting sequenced fragments can be used 
as molecular markers in crop breeding programmes 
(Davey et al., 2011). Though NGS-based markers 
have enhanced crop breeding programmes, still 
there are challenges in high-throughput marker 
generation. These are posed in the form of a way to 
design the experiment, how many individuals to be 
screened, which NGS platform and method will be 
well-suited to minimize the per-sample sequencing 
cost, etc.

Major applications of 
high-throughput markers in crop 
plants
A wide range of applications and methodologies 
of genetic markers has been reported in various 
crop plants (Semagn et al., 2006). Molecular plant 
breeding aims to improve crop variety in terms of 
its quantity and quality by applying the latest inven-
tions made in the fields of genetics and genomics. 
Our understanding about the relationship between 
genotype and phenotype has been continuously 
increasing with the help of advanced genom-
ics tools. Some of these applications include (i) 
surveying allelic diversity in breeding material or 
natural populations to select the desired genotypes; 
(ii) marker-assisted selection (MAS) strategies for 
variety development and germplasm improvement; 
and (iii) gene pyramiding for gathering multiple 
agronomically desirable genes within the same 
cultivar ( Jain et al., 2002; Gupta and Varshney, 
2004). Of these several applications, one of the 
major applications of markers are identification of 
DNA sequences associated with desired traits in 
crop breeding. This type of application has been 
described in several crop breeding programmes 
and greatly benefited the plant breeders in the 
easy selection of genotypes where phenotypic 

expressions become difficult to detect individually 
with utmost breeding value. These expressions may 
be hindered by many factors such as tissue and age 
of plant, environmental conditions, expression 
observing methods and time-frame of expression. 
These constraints can be easily avoided by the 
application of molecular markers in selection of 
genotypes with particular trait(s). Some major 
applications of high-throughput marker technolo-
gies are given with separate subheadings.

Resequencing, genotyping and diversity 

analysis

High-throughput genotyping derived from NGS is 
one of the major applications of molecular mark-
ers. Approximately seven million plant accessions, 
including wild relatives, landraces and human-made 
advanced varieties/cultivars have been preserved in 
several, around 1750 national and international, 
gene banks worldwide (FAO, 2010) and it is a well-
known fact that the whole world is dependent on 
these plants for food, fibre and fuel. Therefore, it is 
very important for biologists to characterize these 
accessions and make them available for further crop 
improvement programmes. In this order, McCouch 
et al. (2012) presented a vision for the potential of 
genotyping at large-scales such as gene bank col-
lections. In this vision, authors also outlined the 
constraints in genotyping work at the gene bank 
level and suggested that applications of NGS may 
solve many problems related to genetic characteri-
zation efforts in gene banks. These major challenges 
include the need to correctly identify accessions 
and eliminate duplicate accessions from gene bank 
collections. Such characterization work has begun 
with rice genomics, whereby 3000 rice genotypes 
have been characterized, including identification of 
SNPs and other structural variations of the genome 
(3K RGP, 2014). However, almost every county 
has legal provision to protect the country’s genetic 
resources by not moving or transferring any such 
materials without approval of the competent insti-
tutions or genetic resource management governing 
body of the country.

Linkage and association mapping

With the use of NGS and genotyping technologies, 
it is possible to develop high-throughput molecular 
markers as well as assume genotyping at large scale 
in both major and minor genes that can be exercised 
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for generating high-resolution genetic and physical 
maps. Meanwhile, these approaches can also be 
exploited to identify genetic variation in germ-
plasm collections of cultivars, landraces and wild 
species. This genetic variation can be introgressed 
in elite cultivar or genotype of interest through 
linkage and association mapping approaches. 
Moreover, the major genes or superior alleles of the 
genes or QTLs for the desirable traits can also be 
identified and introgressed or pyramided in elite 
cultivars or genotypes of interest using advanced 
plant breeding approaches such as marker-assisted 
back crossing (MABC), marker-assisted recur-
rent selection (MARS), advanced-backcross QTL 
(AB-QTL), multi-parent advanced generation 
intercross (MAGIC), or genome-wide selection 
(GWS) (Varshney and Dubey, 2009).

Phylogenetic and evolutionary studies

Before the development of NGS technologies, large-
scale genome-wide studies were restricted to a few 
model organisms whose genomes were sequenced. 
During that time whole genome sequencing was 
very time-consuming and a laborious project and 
it was done with collaboration of many countries. 
Now, the scenario is totally different and even a 
single laboratory may afford the whole sequencing 
work that is only possible by the advancement in 
sequencing technologies. Discovery of molecular 
markers is directly related to the NGS techniques 
and the role of markers in the phylogenetic and 
evolutionary studies is well known. For good qual-
ity of phylogeny as well as evolutionary studies, 
ecologists and evolutionary biologists need data 
from large numbers of individuals. These studies 
along with the power of NGS technology have 
been reported in many non-model organisms for 
determining the gene flow, population divergence, 
diversity level at intra- or inter-population, phyloge-
ography, domestication process, and phylogenetic 
and evolutionary analyses (Grover et al., 2012).

Conclusion and future prospects 
of next-generation sequencing
Next-generation sequencing technologies have rev-
olutionized the field of plant genomics. As of today, 
the large chunk of this success is largely attributed 
to the second-generation sequencing tools. The 
areas which were significantly influenced by NGS 

technologies include genome sequencing, captured 
sequencing, exome sequencing, metagenomics, 
and plant transcriptomics; which includes mRNAs 
and non-coding RNAs and molecular markers and 
plant breeding. The continuous improvements in 
the field of sequencing technologies and associ-
ated decrease in sequencing costs has opened the 
door to small laboratories to take up plant genome 
sequencing projects. In spite of these developments, 
still there are considerable challenges in sequencing 
more complex genomes such as cross-pollinated 
crops and crop with higher polyploids. Neverthe-
less, researchers have taken interest in sequencing 
particular genomic regions and exomes, called as 
captured sequencing. This approach has consider-
ably advanced our knowledge of those crops for 
which there is no sequence information available or 
which are only partially sequenced. NGS also has a 
significant role in metagenomics and enhanced the 
rate of analysis, especially in those circumstances 
where it would have been difficult to analyse using 
traditional tools and approaches. NGS-based tran-
scriptome analysis has contributed significantly 
in transcriptome profiling of those plant species 
where no sequence information is available and also 
improve their ability to immensely contribute for 
novel genes to plant biology. NGS is playing a vital 
role in development of high throughput molecular 
markers as well.

However, the benefits of developments in 
the field of NGS tools can only be harvested by 
integrating the different genomics and genetics tech-
nologies and also advancements in biometrics and 
bioinformatics tools and techniques. This is going 
to be a challenging task in coming years. Finally, 
though captured sequencing has gained impor-
tance in past few years, largely due to sequencing 
costs and complexity involved in it, the future holds 
bright for whole genome sequencing, as the cost of 
sequencing is expected to decrease further and also 
the developments in the third-generation sequenc-
ing techniques have the potential to decrease the 
complexity by easily assembling of more complex 
genomes.
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